In-Pulse™ II
Fuel Injection Control

Applications

The Woodward In-Pulse™ II fuel injection control manages and controls electronically fuel injected (EFI) reciprocating engines (gas, diesel, or dual fuel) used in power generation, marine propulsion, locomotive and industrial engine, and process markets.

The In-Pulse II manages the core fuel system and injection events for many EFI fuel systems, including electronic unit injectors and pumps (EUI/EUP), common rail systems (C-R), SOGAV™ Solenoid Operated Gas Admission Valves, micro pilot injection systems, and electronic rail valves (ERV).

The In-Pulse II can mount directly on the engine, withstanding the high temperature and vibration environment. The In-Pulse II can also be mounted inside nearby control cabinets if required.

The In-Pulse II, with the addition of an 18-channel driver board, uses the same packaging, digital core, software tools, communication ports, I/O, and features of the 733 Digital Control (see product specification 03304). Therefore where common engine types utilize different fuel systems, seamless interchangeability of the core fuel control can be easily accomplished without redesigning the complete engine management system.

If required, the In-Pulse II can be used as the main control unit within an engine management system. The control is designed for network connectivity to other Woodward or customer-selected devices, such as remote I/O modules, actuators, ignition controls, air/exhaust and fuel flow control valves, and power management controls. It may be programmed to perform all engine functions such as speed, air and fuel control, monitoring, alarms, engine protection, and sequencing.

The In-Pulse II improves engine management or plant control system reliability by offering many redundant options, including redundant networks, redundant speed and position sensors, redundant power supply inputs, and a second In-Pulse II wired as a hot stand-by for critical applications or where marine classification requires it.

Because of the many philosophies with respect to sensing speed and crank position, the control incorporates multiple sensing algorithms that include missing tooth and pin detection on the crank or cam for sensing speed and crank position. If sensor failure protection is required, redundant sensors can be employed.

- On-engine mounting
- Controls up to 18 outputs
- Processor technology and I/O is based on the 733 digital control
- Multiple sensor detection options
- Redundant speed sensor options
- Up to 7 injection events per cylinder
- Programmable current profiles for each injection event
- Woodward GAP™ programming environment
- Redundant single propulsion marine configurations
- CSA and CSAUL listed
- CE Compliant
Programming

The In-Pulse II is programmed using Woodward’s proven GAP™ Graphical Application Programmer. GAP is a dedicated, high-level, block-oriented programming language specifically designed for simple and quick implementation of difficult engine control strategies. GAP functions are easily modified and expanded, allowing fast creation of new applications.

Adjustments

Adjustments can be made quickly and easily through the Woodward Watch Window or Control View PC configuration interfaces. Both adjustment methods are menu-driven. The control saves all set points to non-volatile memory upon command. More information is on our website (www.woodward.com).

Communications

The In-Pulse II provides two isolated serial interfaces—one RS-232 and the other RS-485. Both ports feature an industry-standard Modbus® protocol (ASCII or RTU) that can interface to a Modbus master or slave device such as a Human/Machine Interface (HMI). These ports also support Woodward ServLink protocol for a Watch Window or Control View PC interface. Baud rates are tunable to meet specific user requirements.

The In-Pulse II also provides three CAN ports, one of which is isolated if requested. All ports feature J1939 and CANopen protocols. These ports can be used for distributed control with other devices such as actuators, valves, other In-Pulse II controls and 733’s (to load share for example), and to communicate with other on-engine devices such as I/O modules and displays. The isolated port is well suited for communication to off-engine components like PLCs, ship and building systems.

* Modbus is a trademark of Schneider Automation Inc.

Self-Diagnostics

The In-Pulse™ II has integrated diagnostics to determine the control and IO integrity. Memories, processor, IO, and baseline power supply monitoring are included in the diagnostic tests.

Typical In-Pulse II System Diagram
Specifications

Input Power
- **Voltage**: 70–125 Vdc (110 Vdc nominal)
- **Power Consumption**: Application-specific

Speed Signal Inputs (2)
- **Speed Input Voltage**: Magnetic Pickup: 1.4–70.0 V peak-to-peak
- **Proximity Probe**: 5–28 Vdc
- **Speed Input Frequency**: 10 Hz to 25 kHz
- **Proximity Input Duty Cycle**: 10–90% to 10 kHz, 20–80% to 20 kHz
- **Magnetic Pickup Diagnostics**: Open wire detection

Discrete Inputs (8)
- **Type**: 4 isolated inputs can be configured for PWM, digital, or proximity probes
- **Impedance**: 15 kΩ
- **Discrete Input**: Sinking with internal pull-up
- **Proximity Probe Frequency/Duty Cycle**: 10 Hz – 7 kHz / 10–90% to 3 kHz, 20–80% to 7 kHz
- **PWM Frequency/Duty Cycle**: 100 Hz – 1 kHz / 10–90% duty cycle

Analog Inputs (4)
- **Type**: 4–20 mA, transducers externally powered
- **Impedance**: 200 Ω
- **Resolution**: 12 bits
- **Accuracy**: 0.5% of full scale

Current Outputs, 4–20 mA (3)
- **Type**: 4–20 mA
- **Accuracy**: 0.5% of full scale
- **Resolution**: 14 bits
- **Diagnostics**: Current readback provided

Current Outputs, 4-20/20-160 mA (1)
- **Type**: 4–20 mA or 20–160 mA
- **Accuracy**: 0.8% of full scale (4–20 mA) or 1.1% of full scale (20–160 mA)
- **Resolution**: 14 bits
- **Diagnostics**: Current readback provided

Discrete/PWM Outputs (4)
- **Type**: Isolated outputs sinking to dedicated return
- **Max Output Current**: Each output can be configured as either a discrete or PWM output
- **PWM Frequency Range**: 500 mA (Boolean) or 150 mA (PWM)
- **PWM Frequency**: 50–1000 Hz (configurable)

Proximity Probe Power Output (1)
- **Voltage Level**: 15 Vdc, isolated
- **Current Limit**: 60 mA

Injector Outputs (18)
- **Voltage Level**: 70–125 Vdc (as applied at input terminals)
- **Current Limit**: 20 A pull-in (configurable)
- **Type**: May also be configured as 6 PWM FCV drivers (3 A limit)

Environment
- **Max Operating Temperature**: On-engine mounting with application-defined temperature limits
- **Storage Temperature**: –40 to +120 °C (–40 to +248 °F)
- **Humidity**: 95% at +60 °C (+140 °F)
- **Mechanical Vibration**: US MIL-STD 202F, Method 214A, TC(B)
- **Mechanical Shock**: US MIL-STD 810C, Method 516.2, Procedure I
- **Enclosure Protection**: IP-66

Regulatory Compliance

North American:
- **CSA**: CSA Certified for Class I, Division 2, Groups A, B, C, and D, T3C at 85 °C ambient. For use in Canada and the United States. Certificate 1718321

European Compliance for CE Marking:

ATEX – Potentially Explosive Atmospheres Directive:
- **ATEX**: Declared to 94/9/EC COUNCIL DIRECTIVE of 23 March 1994 on the approximation of the laws of the Member States concerning equipment and protective systems intended for use in potentially explosive atmospheres. Zone 2, Category 3, Group II G, Ex nA IIC T3 Gc X IP66