ProAct™ Actuator with Integrated Speed Control and Throttle Body (PISC ITB) and P-Series Position Controller & Throttle Body (P-Series ITB)

PISC and P-Series 85/95/105/120/135 mm ITB

Installation and Operation Manual
DEFINITIONS

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER**—Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- **WARNING**—Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- **CAUTION**—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
- **NOTICE**—Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT**—Designates an operating tip or maintenance suggestion.

WARNING

The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the publications page on the Woodward website: www.woodward.com/publications

The current revision and distribution restriction of all publications are shown in manual 26311.

The latest version of most publications is available on the publications page. If your publication is not there, please contact your customer service representative to get the latest copy.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

NOTICE

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

NOTICE

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Revisions—Text changes are indicated by a black line alongside the text.
Contents

REGULATORY COMPLIANCE ... II
ELECTROSTATIC DISCHARGE AWARENESS .. III
PISC/P-SERIES ITB SPECIFICATIONS .. IV

CHAPTER 1. GENERAL INFORMATION .. 1
Introduction .. 1
Application .. 1
Determining the Proper Valve Size ... 1
Part Number Selection ... 3

CHAPTER 2. INSTALLATION ... 9
Unpacking ... 9
Mounting ... 9

CHAPTER 3. TROUBLESHOOTING .. 13
Introduction .. 13
Governor Problems .. 13
Stability Problems ... 13

CHAPTER 4. PRODUCT SUPPORT AND SERVICE OPTIONS 14
Product Support Options .. 14
Product Service Options ... 14
Returning Equipment for Repair ... 15
Replacement Parts .. 15
Engineering Services .. 16
Contacting Woodward’s Support Organization 16
Technical Assistance .. 17
Revision History .. 18
Declarations ... 19

Illustrations and Tables

Figure 1-1. Cv vs Angle for ProAct ITBs .. 2
Figure 1-2. Outline Drawing of PISC ITB 85/95 mm 4
Figure 1-3. Outline Drawing of PISC ITB 105 mm 5
Figure 1-4. Outline Drawing of PISC ITB 120 mm 6
Figure 1-5. Outline Drawing of PISC III ITB 120 mm 7
Figure 1-6. Outline Drawing of PISC III ITB 135 mm 8
Figure 2-1. Temperature Monitoring Zone (model III shown) 11
Table 1-1. Part Numbers .. 3

The following are trademarks of Woodward, Inc.:
ProAct
Regulatory Compliance

Note—Refer to the ProAct ISC Integrated Speed Control Manual (26246) or ProAct P-Series Position Controller Manual (26578) for actuator compliance.

Other European Compliance:
Compliance with the following European Directive does not qualify this product for application of the CE Marking:

<table>
<thead>
<tr>
<th>Pressure Equipment Directive 2014/68/EU:</th>
<th>Exempt per Article 1-3.10</th>
</tr>
</thead>
</table>

General Installation and Operation Notes and Requirements:
Refer to the ProAct ISC Integrated Speed Control Manual (26246) or ProAct P-Series Position Controller Manual (26578) for actuator compliance and regulatory requirements.

WARNING

EXPLOSION HAZARD—Do not remove covers or connect/disconnect electrical connectors unless power has been switched off or the area is known to be non-hazardous.

Substitution of components may impair suitability for Class I, Division 2.

AVERTISSEMENT

RISQUE D’EXPLOSION—Ne pas enlever les couvercles, ni raccorder / débrancher les prises électriques, sans vous en assurer auparavant que le système a bien été mis hors tension; ou que vous vous situez bien dans une zone non explosive.

La substitution de composants peut rendre ce matériel incompatible pour les emplacements de Classe I, Division 2.
Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).

2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.

3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.

4. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.
PISC/P-Series ITB Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>(–40 to +85) °C / (–40 to +185) °F</td>
</tr>
<tr>
<td>Flow Medium Temperature Range</td>
<td>(–40 to +85) °C / (–40 to +185) °F</td>
</tr>
<tr>
<td>High Temperature Flow</td>
<td>(–40 to +205) °C / (–40 to +400) °F for designated models</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(–55 to +125) °C / (–67 to +257) °F</td>
</tr>
<tr>
<td>Vibration Qualification Test Spec</td>
<td>Woodward RV2 (0.1 G²/Hz Random, 10 Hz to 2000 Hz, 12.8 Grms – 3 hours per axis)</td>
</tr>
<tr>
<td>Shock Qualification Test Spec</td>
<td>40 G, 11 ms sawtooth pulse</td>
</tr>
<tr>
<td>Nominal Diameter</td>
<td>120 mm (4.7 inches)</td>
</tr>
<tr>
<td>Weight</td>
<td>See table under mounting section of manual</td>
</tr>
<tr>
<td>Maximum Working Pressure/Standard Models:</td>
<td>414 kPa/4.1 bar (60 psig) – Gage 515 kPa/5.2 bar.a (75 psia) – Absolute</td>
</tr>
<tr>
<td>Maximum Working Pressure/High-Pressure Models:</td>
<td>711 kPa/7.1 bar (103 psig) – Gage 812 kPa/8.1 bar.a (118 psia) – Absolute</td>
</tr>
</tbody>
</table>
Chapter 1. General Information

Introduction

The ProAct Actuators with Integrated Speed Control and Throttle Body (PISC ITBs) are electrically actuated butterfly valves to control flow output. The 85/95/105/120/135 designation corresponds to the bore size in mm. The P-Series Position Controller versions of the ITBs are mechanically the same, but the Actuator includes PWM input control instead of Integrated Speed Control. This manual should be used in conjunction with the ProAct Integrated Speed Control Actuator manual 26246 or ProAct P-Series Position Controller manual 26578.

References to PISC ITBs in this manual also apply to the P-Series ITBs as well.

This manual is intended to assist the engine designer/retrofitter in properly applying the PISC ITBs. This manual is not intended to be a substitute for consultation with a Woodward application engineer.

Application

The PISC ITBs are throttle valves with integrated electric actuators designed to throttle air or air/fuel for gaseous engines. As stated above, the PISC ITBs offer an integrated speed control. For applications where the end user has its own speed control, the PISC ITBs can be configured as proportional actuators having the speed control functionality disabled. This feature is set at the factory and is reflected in table 1-2 in the part number selection section.

This system is designed for direct replacement of traditional throttle valves, and requires no linkage between valve and actuator. These sizes are designed to cover a wide range of engines and should be selected using the sizing procedure described below.

Determining the Proper Valve Size

The proper size valve can be determined using the equation below. The required Cv (flow coefficient) should be calculated for both the minimum and maximum flows expected on the application. This design allows for a nominal travel of 75 degrees of rotation.

Using the graph and table below, select the closest valve that has a Cv equal to or greater than the calculated maximum flow value at approximately 80% opening (60 degrees) to ensure reasonable flow margin. For further assistance, consult the Woodward engineering department.

IMPORTANT: The ProAct ITBs are designed to minimize external leakage of the charge air/fuel mixture. No overboard drain feature has been provided. Proper venting of the escaped mixture is the responsibility of the end user.
\[Cv = \frac{Q \times 0.00976}{P1 \times Sg} \sqrt{\frac{(T + 460) \times P1 \times Sg}{P1 - P2}} \]

where:
- \(Cv \) = Flow Coefficient
- \(Q \) = Mass Flow (PPH [pounds/hour]) [1 pound = 0.45 kg]
- \(Sg \) = Specific Gravity of Gas (use 1.0 for air)
- \(T1 \) = Upstream Gas Temperature (°F) [°F = 1.8 * °C + 32]
- \(P1 \) = Inlet Pressure (psia) [1 psi = 6.895 kPa = 0.06895 bar]
- \(P2 \) = Downstream Pressure (psia)

IMPORTANT P2 must be greater than 0.528 * P1 or flow becomes choked. If P2 is less than 0.528 * P1, then use \(P2 = 0.528 \times P1 \).

![Figure 1-1. Cv vs Angle for ProAct ITBs](image)

These flow coefficients were determined using the test setup described in ANSI/ISA-S75.02-1996 “Control Valve Capacity Test Procedure”.

The 95 mm ITB has a greater Cv than the 105 mm version. The reason is that the 85 mm and 95 mm versions are newer valve configurations that have less restrictive valve plates than the design used on the 105 mm and 120 mm versions. Given this, for new applications, the 95 mm may be preferred over the 105 mm version. However, the 105 mm will still be offered to end users who prefer this diameter or do not want to switch to the 95 mm.
Part Number Selection

After determining the proper valve size, the part number of the assembly can be determined from the table below.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Nominal Piping Size (DN)</th>
<th>Flow Medium Max Temperature</th>
<th>Max Working Pressure (Absolute)</th>
<th>Actuator</th>
<th>O-Rings for Grooves on Flanges</th>
<th>Mass of Valve and Actuator</th>
<th>Approx. Location of CG from Valve Bore Centerline</th>
</tr>
</thead>
<tbody>
<tr>
<td>8235-360</td>
<td>135</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC III</td>
<td>Parker 2-255</td>
<td>19.7 kg (43.4 lb)</td>
<td>178 mm (7.0")</td>
</tr>
<tr>
<td>8235-371</td>
<td>135</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series III</td>
<td>Parker 2-255</td>
<td>19.7 kg (43.4 lb)</td>
<td>178 mm (7.0")</td>
</tr>
<tr>
<td>8235-350</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC III</td>
<td>Parker 2-255</td>
<td>20.0 kg (44.1 lb)</td>
<td>180 mm (7.1")</td>
</tr>
<tr>
<td>8235-305</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-255</td>
<td>16.4 kg (36.1 lb)</td>
<td>139 mm (5.5")</td>
</tr>
<tr>
<td>8235-366</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-255</td>
<td>16.4 kg (36.1 lb)</td>
<td>139 mm (5.5")</td>
</tr>
<tr>
<td>8235-198</td>
<td>105</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-365</td>
<td>105</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-361</td>
<td>105</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-337</td>
<td>95</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-244</td>
<td>14.5 kg (32.0 lb)</td>
<td>154 mm (6.1")</td>
</tr>
<tr>
<td>8235-370</td>
<td>95</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-244</td>
<td>14.5 kg (32.0 lb)</td>
<td>154 mm (6.1")</td>
</tr>
<tr>
<td>8235-339</td>
<td>85</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-241</td>
<td>14.6 kg (32.2 lb)</td>
<td>152 mm (6.0")</td>
</tr>
<tr>
<td>8235-369</td>
<td>85</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-241</td>
<td>14.6 kg (32.2 lb)</td>
<td>152 mm (6.0")</td>
</tr>
<tr>
<td>8235-351</td>
<td>85</td>
<td>100 °C</td>
<td>8.1 BAR.A</td>
<td>PISC III</td>
<td>No groove</td>
<td>19.1 kg (42.0 lb)</td>
<td>169 mm (6.7")</td>
</tr>
</tbody>
</table>

Table 1-1. Part Numbers
Figure 1-2. Outline Drawing of PISC ITB 85/95 mm
Figure 1-3. Outline Drawing of PISC ITB 105 mm
Figure 1-4. Outline Drawing of PISC ITB 120 mm
Figure 1-5. Outline Drawing of PISC III ITB 120 mm
Figure 1-6. Outline Drawing of PISC III ITB 135 mm
Chapter 2. Installation

Unpacking

Be careful when unpacking the device. Check the driver for signs of damage, such as bent or dented panels, scratches, and loose or broken parts. Notify the shipper and Woodward if damage is found.

Mounting

For wiring, and thermal considerations regarding the actuator, refer to the installation procedure in the ProAct Integrated Speed Control Actuator manual 26246 or ProAct P-Series Position Controller manual 26578.

EXPLOSION HAZARD—Do not connect or disconnect while circuit is live, unless area is known to be non-hazardous.

Substitution of components may impair suitability for Class I, Division 2.

NOTICE

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

The PISC/P-Series ITBs with model II actuators are designed to be mounted on the valve flange. However, the end-user may also want to support the actuator to minimize the loads on their piping. The PISC/P-Series ITBs with model III and model IV actuators are designed to be base-mounted due to the higher mass of the actuator and the increased lever arm between the center of the bore and the center of gravity.

Flange mounting of model III may be allowed, but the vibration level must be assessed together with Woodward in order to ensure a low level of stress on the component.

The bracket and attaching hardware for all models must be designed to hold the weight of the throttle assembly and to withstand the vibration associated with engine mounting. Four M8 tapped holes are located in the base of the actuator for this purpose. For reference, the mass of the ITB along with the location of its center of gravity (CG) is listed in the following table:
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Nominal Piping Size (DN)</th>
<th>Flow Medium Max Temperature</th>
<th>Max Working Pressure (Absolute)</th>
<th>Actuator</th>
<th>O-Rings for Grooves on Flanges</th>
<th>Mass of Valve and Actuator</th>
<th>Approx. Location of CG from Valve Bore Centerline</th>
</tr>
</thead>
<tbody>
<tr>
<td>8235-360</td>
<td>135</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC III</td>
<td>Parker 2-255</td>
<td>19.7 kg (43.4 lb)</td>
<td>178 mm (7.0")</td>
</tr>
<tr>
<td>8235-371</td>
<td>135</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series III</td>
<td>Parker 2-255</td>
<td>19.7 kg (43.4 lb)</td>
<td>178 mm (7.0")</td>
</tr>
<tr>
<td>8235-350</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC III</td>
<td>Parker 2-255</td>
<td>20.0 kg (44.1 lb)</td>
<td>180 mm (7.1")</td>
</tr>
<tr>
<td>8235-305</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-255</td>
<td>16.4 kg (36.1 lb)</td>
<td>139 mm (5.5")</td>
</tr>
<tr>
<td>8235-366</td>
<td>120</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-255</td>
<td>16.4 kg (36.1 lb)</td>
<td>139 mm (5.5")</td>
</tr>
<tr>
<td>8235-198</td>
<td>105</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-365</td>
<td>105</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-361</td>
<td>105</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-250</td>
<td>16.5 kg (36.3 lb)</td>
<td>137 mm (5.4")</td>
</tr>
<tr>
<td>8235-337</td>
<td>95</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-244</td>
<td>14.5 kg (32.0 lb)</td>
<td>154 mm (6.1")</td>
</tr>
<tr>
<td>8235-370</td>
<td>95</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-244</td>
<td>14.5 kg (32.0 lb)</td>
<td>154 mm (6.1")</td>
</tr>
<tr>
<td>8235-339</td>
<td>85</td>
<td>205 °C</td>
<td>5.2 BAR.A</td>
<td>PISC II</td>
<td>Parker 2-241</td>
<td>14.6 kg (32.2 lb)</td>
<td>152 mm (6.0")</td>
</tr>
<tr>
<td>8235-369</td>
<td>85</td>
<td>85 °C</td>
<td>5.2 BAR.A</td>
<td>P-Series II</td>
<td>Parker 2-241</td>
<td>14.6 kg (32.2 lb)</td>
<td>152 mm (6.0")</td>
</tr>
<tr>
<td>8235-351</td>
<td>85</td>
<td>100 °C</td>
<td>8.1 BAR.A</td>
<td>PISC III</td>
<td>No groove</td>
<td>19.1 kg (42.0 lb)</td>
<td>169 mm (6.7")</td>
</tr>
</tbody>
</table>

[Table 1-1 repeated]

NOTICE

A minimum gap of 0.5 mm must be maintained between the support bracket and electronics enclosure (see Figure 2-1). This is necessary because the enclosure is supported on vibration isolators to filter out high-frequency vibrations from reaching the electronics. If the enclosure contacts the bracket, the isolation is defeated and may reduce the electronics operating life.

If spacers are used to achieve the necessary gap, Woodward recommends maximizing the surface contact area of the spacers to maximize heat transfer between the ProAct and mounting bracket.
Figure 2-1. Temperature Monitoring Zone (model III shown)

Locate the appropriate O-rings (specified on the outline drawing) in the grooves on both sides of the valve body. Install the four M10 or 3/8-inch bolts on both flanges and tighten evenly to a torque recommended by the engine manufacturer. The relationship between the valve body and the actuator has been pre-set by Woodward, therefore no adjustments are required by the end user. No valve maintenance by the end user is required.
EXPLOSION HAZARD—The surface temperature of this valve approaches the maximum temperature of the applied process media. It is the responsibility of the user to ensure that the external environment contains no hazardous gases capable of ignition in the range of the process media temperatures.

WARNING External fire protection is not provided in the scope of this product. It is the responsibility of the user to satisfy any applicable requirements for their system.

CAUTION Due to typical noise levels, hearing protection should be worn when working on or around the ProAct ITB.

CAUTION The surface of this product can become hot enough or cold enough to be a hazard. Use protective gear for product handling in these circumstances. Temperature ratings are included in the specification section of this manual.

NOTICE A minimum gap of 0.5 mm must be maintained between the support bracket and electronics enclosure (see Figure 2-1). This is necessary because the enclosure is supported on vibration isolators to filter out high-frequency vibrations from reaching the electronics. If the enclosure contacts the bracket, the isolation is defeated and may reduce the electronics operating life.

If spacers are used to achieve the necessary gap, Woodward recommends maximizing the surface contact area of the spacers to maximize heat transfer between the ProAct and mounting bracket.

NOTICE Do not lift or handle the valve by any wiring or conduit.
Chapter 3.
Troubleshooting

Introduction

Improper engine operation is often the result of factors other than governor operation. The following paragraphs are provided to give tips about engine problems, which can resemble governor problems. Make sure the engine is operating correctly before making any changes in the governor.

Attempting to correct engine or load problems with untimely governor adjustment can add to the problems involved with solving improper operation.

Most governor problems are corrected by carefully repeating the calibration procedure given in the governor manual. There are no adjustments available within the valve.

If possible, isolate the governor from the engine to determine if the problem is with the governor and not with the engine or the load on the engine.

Governor system faults are usually caused by problems in the installation. Carefully review all the wiring connections, the power supply, and the actuator before making any adjustments to the control box. The throttle valve should be considered as a possible control problem if it was not removed during installation.

Governor Problems

If the engine will not start, the following problems may exist:

- Verify that any “open for shutdown” contacts are closed.
- Make sure the start fuel limit is not preventing adequate airflow.
- Verify that the 24 V power supply is present at the appropriate governor terminals.

Stability Problems

Stability problems not caused by the engine or gas pressure at the carburetor require carefully following the setup procedure provided in the governor manual. Follow every step when readjusting the control.

If the engine oscillates when cold and stabilizes when warm, make sure that the desired (usually idle) dynamics have been selected. Turn the selected dynamics gain pot slightly counterclockwise. Turn the stability pot slightly clockwise if required to maintain stability.
Chapter 4. Product Support and Service Options

Product Support Options

If you are experiencing problems with the installation, or unsatisfactory performance of a Woodward product, the following options are available:

1. Consult the troubleshooting guide in the manual.
2. Contact the OE Manufacturer or Packager of your system.
3. Contact the Woodward Business Partner serving your area.
4. Contact Woodward technical assistance via email (EngineHelpDesk@Woodward.com) with detailed information on the product, application, and symptoms. Your email will be forwarded to an appropriate expert on the product and application to respond by telephone or return email.
5. If the issue cannot be resolved, you can select a further course of action to pursue based on the available services listed in this chapter.

OEM or Packager Support: Many Woodward controls and control devices are installed into the equipment system and programmed by an Original Equipment Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the programming is password-protected by the OEM or packager, and they are the best source for product service and support. Warranty service for Woodward products shipped with an equipment system should also be handled through the OEM or Packager. Please review your equipment system documentation for details.

Woodward Business Partner Support: Woodward works with and supports a global network of independent business partners whose mission is to serve the users of Woodward controls, as described here:

- **A Full-Service Distributor** has the primary responsibility for sales, service, system integration solutions, technical desk support, and aftermarket marketing of standard Woodward products within a specific geographic area and market segment.
- **An Authorized Independent Service Facility (AISF)** provides authorized service that includes repairs, repair parts, and warranty service on Woodward's behalf. Service (not new unit sales) is an AISF's primary mission.
- **A Recognized Engine Retrofitter (RER)** is an independent company that does retrofits and upgrades on reciprocating gas engines and dual-fuel conversions, and can provide the full line of Woodward systems and components for the retrofits and overhauls, emission compliance upgrades, long term service contracts, emergency repairs, etc.

A current list of Woodward Business Partners is available at www.woodward.com/directory.

Product Service Options

Depending on the type of product, the following options for servicing Woodward products may be available through your local Full-Service Distributor or the OEM or Packager of the equipment system.

- Replacement/Exchange (24-hour service)
- Flat Rate Repair
- Flat Rate Remanufacture
Replacement/Exchange: Replacement/Exchange is a premium program designed for the user who is in need of immediate service. It allows you to request and receive a like-new replacement unit in minimum time (usually within 24 hours of the request), providing a suitable unit is available at the time of the request, thereby minimizing costly downtime.

This option allows you to call your Full-Service Distributor in the event of an unexpected outage, or in advance of a scheduled outage, to request a replacement control unit. If the unit is available at the time of the call, it can usually be shipped out within 24 hours. You replace your field control unit with the like-new replacement and return the field unit to the Full-Service Distributor.

Flat Rate Repair: Flat Rate Repair is available for many of the standard mechanical products and some of the electronic products in the field. This program offers you repair service for your products with the advantage of knowing in advance what the cost will be.

Flat Rate Remanufacture: Flat Rate Remanufacture is very similar to the Flat Rate Repair option, with the exception that the unit will be returned to you in “like-new” condition. This option is applicable to mechanical products only.

Returning Equipment for Repair

If a control (or any part of an electronic control) is to be returned for repair, please contact your Full-Service Distributor in advance to obtain Return Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:
- return number;
- name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part number(s) and serial number(s);
- description of the problem;
- instructions describing the desired type of repair.

Packing a Control

Use the following materials when returning a complete control:
- protective caps on any connectors;
- antistatic protective bags on all electronic modules;
- packing materials that will not damage the surface of the unit;
- at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- a packing carton with double walls;
- a strong tape around the outside of the carton for increased strength.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Replacement Parts

When ordering replacement parts for controls, include the following information:
- the part number(s) (XXXX-XXXX) that is on the enclosure nameplate;
- the unit serial number, which is also on the nameplate.
Engineering Services

Woodward’s Full-Service Distributors offer various Engineering Services for our products. For these services, you can contact the Distributor by telephone or by email.

- **Technical Support**
- **Product Training**
- **Field Service**

Technical Support is available from your equipment system supplier, your local Full-Service Distributor, or from many of Woodward’s worldwide locations, depending upon the product and application. This service can assist you with technical questions or problem solving during the normal business hours of the Woodward location you contact.

Product Training is available as standard classes at many Distributor locations. Customized classes are also available, which can be tailored to your needs and held at one of our Distributor locations or at your site. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability.

Field Service engineering on-site support is available, depending on the product and location, from one of our Full-Service Distributors. The field engineers are experienced both on Woodward products as well as on much of the non-Woodward equipment with which our products interface.

For information on these services, please contact one of the Full-Service Distributors listed at www.woodward.com/directory.

Contacting Woodward’s Support Organization

For the name of your nearest Woodward Full-Service Distributor or service facility, please consult our worldwide directory published at www.woodward.com/directory.

You can also contact the Woodward Customer Service Department at one of the following Woodward facilities to obtain the address and phone number of the nearest facility at which you can obtain information and service.

Products Used In Electrical Power Systems

<table>
<thead>
<tr>
<th>Facility</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>+55 (19) 3708 4800</td>
</tr>
<tr>
<td>China</td>
<td>+86 (512) 6762 6727</td>
</tr>
<tr>
<td>Germany:</td>
<td></td>
</tr>
<tr>
<td>Kempen</td>
<td>+49 (0) 21 52 14 51</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>+49 (711) 78954-510</td>
</tr>
<tr>
<td>India</td>
<td>+91 (129) 4097100</td>
</tr>
<tr>
<td>Japan</td>
<td>+81 (43) 213-2191</td>
</tr>
<tr>
<td>Korea</td>
<td>+82 (51) 636-7080</td>
</tr>
<tr>
<td>Poland</td>
<td>+48 12 295 13 00</td>
</tr>
<tr>
<td>United States</td>
<td>+1 (970) 482-5811</td>
</tr>
</tbody>
</table>

Products Used In Engine Systems

<table>
<thead>
<tr>
<th>Facility</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>+55 (19) 3708 4800</td>
</tr>
<tr>
<td>China</td>
<td>+86 (512) 6762 6727</td>
</tr>
<tr>
<td>Germany</td>
<td>+49 (711) 78954-510</td>
</tr>
<tr>
<td>India</td>
<td>+91 (129) 4097100</td>
</tr>
<tr>
<td>Japan</td>
<td>+81 (43) 213-2191</td>
</tr>
<tr>
<td>Korea</td>
<td>+82 (51) 636-7080</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>+31 (23) 5661111</td>
</tr>
<tr>
<td>United States</td>
<td>+1 (970) 482-5811</td>
</tr>
</tbody>
</table>

Products Used In Industrial Turbomachinery Systems

<table>
<thead>
<tr>
<th>Facility</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>+55 (19) 3708 4800</td>
</tr>
<tr>
<td>China</td>
<td>+86 (512) 6762 6727</td>
</tr>
<tr>
<td>India</td>
<td>+91 (129) 4097100</td>
</tr>
<tr>
<td>Japan</td>
<td>+81 (43) 213-2191</td>
</tr>
<tr>
<td>Korea</td>
<td>+82 (51) 636-7080</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>+31 (23) 5661111</td>
</tr>
<tr>
<td>Poland</td>
<td>+48 12 295 13 00</td>
</tr>
<tr>
<td>United States</td>
<td>+1 (970) 482-5811</td>
</tr>
</tbody>
</table>

For the most current product support and contact information, please visit our website directory at www.woodward.com/directory.
Technical Assistance

If you need to contact technical assistance, you will need to provide the following information. Please write it down here before contacting the Engine OEM, the Packager, a Woodward Business Partner, or the Woodward factory:

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Name</td>
</tr>
<tr>
<td>Site Location</td>
</tr>
<tr>
<td>Phone Number</td>
</tr>
<tr>
<td>Fax Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prime Mover Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
</tr>
<tr>
<td>Engine Model Number</td>
</tr>
<tr>
<td>Number of Cylinders</td>
</tr>
<tr>
<td>Type of Fuel (gas, gaseous, diesel, dual-fuel, etc.)</td>
</tr>
<tr>
<td>Power Output Rating</td>
</tr>
<tr>
<td>Application (power generation, marine, etc.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control/Governor Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control/Governor #1</td>
</tr>
<tr>
<td>Woodward Part Number & Rev. Letter</td>
</tr>
<tr>
<td>Control Description or Governor Type</td>
</tr>
<tr>
<td>Serial Number</td>
</tr>
</tbody>
</table>

| Control/Governor #2 |
| Woodward Part Number & Rev. Letter |
| Control Description or Governor Type |
| Serial Number |

| Control/Governor #3 |
| Woodward Part Number & Rev. Letter |
| Control Description or Governor Type |
| Serial Number |

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
</tbody>
</table>

If you have an electronic or programmable control, please have the adjustment setting positions or the menu settings written down and with you at the time of the call.
Changes in Revision G—
- Updated Regulatory Compliance section with new EU directive
- New Declaration of Conformity & Declaration of Incorporation

Changes in Revision F—
- Added P-Series ITBs (135 mm/8235-371, 120 mm/8235-366, 105 mm/8235-365,
 95 mm/8235-370, 85 mm/8235-369) and reference to P-Series Manual
 (26578)

Changes in Revision E—
- Updated compliance information

Changes in Revision D—
- Added new high-pressure 85 mm ITB (8235-351)
- Added flange-mounting details and precautions for model III
- Added 120 mm PISC III ITB (8235-350) and 135 mm PISC III ITB (8235-360)
DECLARATION OF CONFORMITY

EU DoC No.: 00130-04-CE-02-03
Manufacturer’s Name: WOODWARD, INC.
Manufacturer’s Contact Address: 3800 Wilson Avenue
 Loveland, CO 80538 USA
Model Name(s)/Number(s): ProAct Integrated Speed Control (ISC)

The object of the declaration described above is in conformity with the following relevant Union harmonization legislation:

Applicable Standards:
EN61000-6-4, 2011: EMC Part 6-4: Generic Standards - Emissions for Industrial Environments
EN61000-6-2, 2005: EMC Part 6-2: Generic Standards - Immunity for Industrial Environments

This declaration of conformity is issued under the sole responsibility of the manufacturer.
We, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s).

MANUFACTURER

Signature [Signature]

Christopher Perkins
Full Name

Engineering Manager
Position

Woodward, Fort Collins, CO, USA
Place

Date 05-APR-2016

5-09-1183 Rev 26
DECLARATION OF INCORPORATION
Of Partly Completed Machinery
2006/42/EC

File name: 00130-04-CE-02-04
Manufacturer’s Name: WOODWARD INC.
Manufacturer’s Address: 1041 Woodward Way
Fort Collins, CO 80524 USA
Model Names: ProAct Integrated Speed Control

This product complies, where applicable, with the following
Essential Requirements of Annex I: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

The relevant technical documentation is compiled in accordance with part B of Annex VII. Woodward shall transmit relevant information if required by a reasoned request by the national authorities. The method of transmittal shall be agreed upon by the applicable parties.

The person authorized to compile the technical documentation:

Name: Dominik Kania, Managing Director
Address: Woodward Poland Sp. z o.o., ul. Skarbowa 32, 32-005 Niepolomice, Poland

This product must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of this Directive, where appropriate.

The undersigned hereby declares, on behalf of Woodward Governor Company of Loveland and Fort Collins, Colorado that the above referenced product is in conformity with Directive 2006/42/EC as partly completed machinery.

MANUFACTURER

Signature

Christopher Perkins

Full Name

Position

Engineering Manager

Woodward Inc., Fort Collins, CO, USA

Place

Date

16 - MAY - 2016

Document: 5-09-1182 (rev. 16)
We appreciate your comments about the content of our publications.
Send comments to: icinfo@woodward.com

Please reference publication 26265G.