Manual 26546 consists of 2 volumes (26546V1 & 26546V2).

Volume 2—Programming and Configuration
Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment.

Practice all plant and safety instructions and precautions.

Failure to follow instructions can cause personal injury and/or property damage.

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, on the publications page of the Woodward website:

www.woodward.com/publications

The latest version of most publications is available on the publications page. If your publication is not there, please contact your customer service representative to get the latest copy.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

If the cover of this publication states "Translation of the Original Instructions" please note:

The original source of this publication may have been updated since this translation was made. Be sure to check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, to verify whether this translation is up to date. Out-of-date translations are marked with . Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

Revisions—Changes in this publication since the last revision are indicated by a black line alongside the text.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

Copyright © Woodward 2010
All Rights Reserved
Contents

WARNINGS AND NOTICES .. IV

ELECTROSTATIC DISCHARGE AWARENESS ... V

CHAPTER 9. FRONT PANEL INTERFACE .. 1
Introduction .. 1
Screen Layout ... 2
Keypad Functions ... 3
Navigation ... 4
Passwords ... 5
Monitor Menu .. 6
View Logs .. 18
Configure Menu ... 23
Test Modes Menu ... 31

CHAPTER 10. PROGRAMMING AND CONFIGURATION TOOL 38
General ... 38
Installation of the PCT .. 39
Levels of Operation of the Programming and Configuration Tool (PCT) 39
Using the Programming and Configuration Tool (PCT) 40
On-Line Menu ... 42
Configuration of the ProTech-SX ... 52
On-Line Configuration ... 52
Off-Line Configuration .. 55
Configuration Settings ... 67
Configuration of Custom Logic ... 96
ProTech-SX Configuration Checks .. 97
Error Messages and Solutions ... 101

CHAPTER 11. PROTECH-SX CONFIGURATION WORKSHEET 102

Illustrations and Tables

Figure 9-1. ProTech-SX Front Panel ... 1
Figure 9-2. ProTech-SX Screen ... 2
Figure 9-3. ProTech-SX Faceplate ... 3
Figure 9-4. Home screen (with Alarm) .. 4
Figure 9-5. Home screen (with Trip) ... 4
Figure 9-6. Password Entry Screen ... 5
Figure 9-7. Monitor Menu ... 6
Figure 9-8. Monitor Summary (Page 1) .. 7
Figure 9-9. Monitor Summary (Page 2) .. 7
Figure 9-10. Monitor Summary (Page 3) ... 8
Figure 9-11. Monitor Trip Latch .. 9
Figure 9-12. Monitor Alarm Latch ... 10
Figure 9-13. Monitor Event Latch ... 10
Figure 9-14. Monitor Trip Cycle Time Monitors .. 10
Figure 9-15. Monitor Dedicated Discrete Inputs .. 11
Figure 9-16. Monitor Configurable Inputs .. 11
Illustrations and Tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-17</td>
<td>Monitor Analog Comparator</td>
<td>12</td>
</tr>
<tr>
<td>9-18</td>
<td>Monitor Logic Gates</td>
<td>12</td>
</tr>
<tr>
<td>9-19</td>
<td>Monitor Timer</td>
<td>12</td>
</tr>
<tr>
<td>9-20</td>
<td>Monitor Latch</td>
<td>13</td>
</tr>
<tr>
<td>9-21</td>
<td>Monitor Delay</td>
<td>13</td>
</tr>
<tr>
<td>9-22</td>
<td>Monitor Programmable Relays</td>
<td>13</td>
</tr>
<tr>
<td>9-23</td>
<td>Monitor Speed Input (Single Speed)</td>
<td>14</td>
</tr>
<tr>
<td>9-24</td>
<td>Monitor Speed Input (Dual Redundant Speed)</td>
<td>14</td>
</tr>
<tr>
<td>9-25</td>
<td>Monitor Speed Fail Timer</td>
<td>14</td>
</tr>
<tr>
<td>9-26</td>
<td>Monitor Analog Output</td>
<td>15</td>
</tr>
<tr>
<td>9-27</td>
<td>Monitor Modbus Status</td>
<td>15</td>
</tr>
<tr>
<td>9-28</td>
<td>Monitor Date & Time</td>
<td>16</td>
</tr>
<tr>
<td>9-29</td>
<td>Set Date & Time</td>
<td>16</td>
</tr>
<tr>
<td>9-30</td>
<td>Set Date & Time</td>
<td>17</td>
</tr>
<tr>
<td>9-31</td>
<td>Save Date & Time</td>
<td>17</td>
</tr>
<tr>
<td>9-32</td>
<td>Monitor Module Information</td>
<td>18</td>
</tr>
<tr>
<td>9-33</td>
<td>Alarm Log Menu</td>
<td>18</td>
</tr>
<tr>
<td>9-34</td>
<td>Overspeed/Overacceleration Log</td>
<td>19</td>
</tr>
<tr>
<td>9-35</td>
<td>Trip Log</td>
<td>20</td>
</tr>
<tr>
<td>9-36</td>
<td>Alarm Log</td>
<td>20</td>
</tr>
<tr>
<td>9-37</td>
<td>Trip Cycle Time Log</td>
<td>21</td>
</tr>
<tr>
<td>9-38</td>
<td>Event Log</td>
<td>21</td>
</tr>
<tr>
<td>9-39</td>
<td>Peak Speed/Accel Log</td>
<td>22</td>
</tr>
<tr>
<td>9-40</td>
<td>Reset Logs</td>
<td>22</td>
</tr>
<tr>
<td>9-41</td>
<td>Configure Menu</td>
<td>23</td>
</tr>
<tr>
<td>9-42</td>
<td>Configure Speed Input</td>
<td>23</td>
</tr>
<tr>
<td>9-43</td>
<td>Configure Start Logic</td>
<td>27</td>
</tr>
<tr>
<td>9-44</td>
<td>Configure Trip Latch</td>
<td>27</td>
</tr>
<tr>
<td>9-45</td>
<td>Configure Analog Output</td>
<td>28</td>
</tr>
<tr>
<td>9-46</td>
<td>Configure Test Modes</td>
<td>28</td>
</tr>
<tr>
<td>9-47</td>
<td>Configure Modbus</td>
<td>29</td>
</tr>
<tr>
<td>9-48</td>
<td>Configuration Management Menu</td>
<td>29</td>
</tr>
<tr>
<td>9-49</td>
<td>Configuration Overview</td>
<td>30</td>
</tr>
<tr>
<td>9-50</td>
<td>Password Change</td>
<td>30</td>
</tr>
<tr>
<td>9-51</td>
<td>Test Modes Menu</td>
<td>32</td>
</tr>
<tr>
<td>9-52</td>
<td>Temporary Overspeed Test</td>
<td>32</td>
</tr>
<tr>
<td>9-53</td>
<td>Temporary Overspeed Test Active</td>
<td>33</td>
</tr>
<tr>
<td>9-54</td>
<td>Manual Simulated Speed Test</td>
<td>34</td>
</tr>
<tr>
<td>9-55</td>
<td>Test Frequency Resolution</td>
<td>34</td>
</tr>
<tr>
<td>9-56</td>
<td>Simulated Speed Test</td>
<td>35</td>
</tr>
<tr>
<td>9-57</td>
<td>User Defined Test</td>
<td>36</td>
</tr>
<tr>
<td>9-58</td>
<td>User Defined Tests</td>
<td>37</td>
</tr>
<tr>
<td>9-59</td>
<td>Lamp Test</td>
<td>37</td>
</tr>
<tr>
<td>10-1</td>
<td>On-Line Menu</td>
<td>40</td>
</tr>
<tr>
<td>10-2</td>
<td>Network Selection</td>
<td>41</td>
</tr>
<tr>
<td>10-3</td>
<td>On-Line Menu</td>
<td>42</td>
</tr>
<tr>
<td>10-4</td>
<td>Configuration Error Log</td>
<td>43</td>
</tr>
<tr>
<td>10-5</td>
<td>Configuration Error</td>
<td>44</td>
</tr>
<tr>
<td>10-6</td>
<td>Trip and Alarm Logs</td>
<td>45</td>
</tr>
<tr>
<td>10-7</td>
<td>Overspeed/Acceleration and Trip Cycle Time Log</td>
<td>46</td>
</tr>
<tr>
<td>10-8</td>
<td>Event Log</td>
<td>47</td>
</tr>
<tr>
<td>10-9</td>
<td>Module Faults Log</td>
<td>48</td>
</tr>
<tr>
<td>10-10</td>
<td>Configuration Overview</td>
<td>50</td>
</tr>
<tr>
<td>10-11</td>
<td>Off-Line Menu</td>
<td>51</td>
</tr>
</tbody>
</table>
Illustrations and Tables

Figure 10-12. Applying Changes to the Unit .. 53
Figure 10-13. Load Settings to the Unit .. 54
Figure 10-14. Load Settings Error ... 54
Figure 10-15. Load Settings Error—Module not Tripped 55
Figure 10-16. ToolKit Settings Menu ... 56
Figure 10-17. SID Specification File .. 57
Figure 10-18. Off-Line Program Mode ... 57
Figure 10-19. Save from Device to a File .. 58
Figure 10-20. Save from Device to a File ... 59
Figure 10-21. Save from Device to a File—Security .. 60
Figure 10-22. Save from Device to a File—Location .. 61
Figure 10-23. Settings Editor Window ... 61
Figure 10-24. Settings Editor Navigation ... 62
Figure 10-25. Load Settings File to Device ... 63
Figure 10-26. Load Settings File to Device not Permitted 64
Figure 10-27. Load Settings File to Device—Network Selection 65
Figure 10-28. Load Settings File to Device—Security 65
Figure 10-29. Compare Settings Files ... 66
Figure 10-30. Settings Files Differences .. 66
Figure 10-31. Programming—Speed ... 68
Figure 10-32. Programming—Inputs ... 70
Figure 10-33. Analog Input Scaling ... 71
Figure 10-34. Analog Input Alarm Levels ... 71
Figure 10-35. Modbus Communications .. 72
Figure 10-36. Time Synchronization ... 73
Figure 10-37. Programming—Test Modes ... 75
Figure 10-38. Logic Gate Monitor Screen (front panel) 77
Figure 10-39. Programming—Logic Gates ... 77
Figure 10-40. Logic Gate Example ... 78
Figure 10-41. Latch Monitor Screen (front panel) ... 79
Figure 10-42. Programming—Latches ... 80
Figure 10-43. Delay Monitor Screen (front panel) ... 81
Figure 10-44. Programming—Delay Blocks ... 81
Figure 10-45. Unit Delay Monitor Screen (front panel) 82
Figure 10-46. Comparator Monitor Screen (front panel) 83
Figure 10-47. Programming—Comparator Blocks ... 83
Figure 10-48. Timer Monitor Screen (front panel) ... 84
Figure 10-49. Programming—Timer Blocks ... 85
Figure 10-50. Programming—Trip Cycle Timers .. 86
Figure 10-51. Programming—Trip Latches ... 88
Figure 10-52. Programming—Alarm Latches ... 89
Figure 10-53. Programming—Reset Logic ... 90
Figure 10-54. Programming—Other Outputs .. 91
Figure 10-55. Programming—Event Latches .. 93
Figure 10-56. Configuration Error—While Loading Settings 101
Warnings and Notices

Important Definitions

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER**—Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- **WARNING**—Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- **CAUTION**—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
- **NOTICE**—Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT**—Designates an operating tip or maintenance suggestion.

WARNING

Overspeed / Overtemperature / Overpressure

The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

WARNING

Personal Protective Equipment

The products described in this publication may present risks that could lead to personal injury, loss of life, or property damage. Always wear the appropriate personal protective equipment (PPE) for the job at hand. Equipment that should be considered includes but is not limited to:

- Eye Protection
- Hearing Protection
- Hard Hat
- Gloves
- Safety Boots
- Respirator

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.

WARNING

Start-up

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

WARNING

Automotive Applications

On- and off-highway Mobile Applications: Unless Woodward's control functions as the supervisory control, customer should install a system totally independent of the prime mover control system that monitors for supervisory control of engine (and takes appropriate action if supervisory control is lost) to protect against loss of engine control with possible personal injury, loss of life, or property damage.
NOTICE

Battery Charging Device

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electrostatic Discharge Awareness

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts:

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules*.

Follow these precautions when working with or near the control.

1. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.

2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.
Chapter 9.
Front Panel Interface

Introduction

The front panel of the ProTech-SX allows the user to view current values for any inputs, Alarm, Trip, and Event logs, current values of all logic including configured functions, and navigate through configured logic. The user can also reset a module, initiate start logic, initiate tests (including user defined tests), and configure Speed functions. This chapter defines the features and functions accessible through the Front Panel of the ProTech-SX.

There are four main views (under the HOME screen shown above):

- **Monitor Menu**—View configuration settings, real time values, and status indications.
- **View Logs**—View all logged events with corresponding time stamps.
- **Config Menu**—Configure basic operation functions, overspeed, acceleration trip, etc. Complex user defined functionality is configured using the Programming and Configuration Tool (PCT).
- **Test Menu**—Perform system tests. Overspeed, Simulated Speed, Periodic Overspeed, and custom configured user-defined tests.
Screen Layout

Each screen on the ProTech-SX module follows a consistent layout pattern as shown in Figure 9-2.

<table>
<thead>
<tr>
<th>Screen Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREEN DATA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCREEN ANNUNCIATION or Screen Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Key 1</td>
</tr>
</tbody>
</table>

Figure 9-2. ProTech-SX Screen

Screen Name – At the top of each screen is the “Screen Name” which identifies the type of data being displayed or the function being performed on that screen.

Screen Data – The middle or main body of each screen shows either data, a menu of selectable fields, or fields for entering data or passwords. Values in **BLUE font** are values that can change. **BLACK font** is used for static labels or values that can only change by changing the configuration.

NOTE: In cases where there is too much information to show in the screen data field, a slider bar will appear on the right side to show that additional information can be accessed by using the UP/DN arrow keys.

Screen Annunciation or Message – Below the Screen Data, there is an area reserved for Messages to aid the user. If the screen is in one of the Monitor Menu screens and is just displaying data, this space is reserved to annunciate any alarm or trip messages. The alarm or trip messages are shown in a larger text and highlighted with either yellow or red, respectively. Otherwise this field is used to show user prompts to help with selection or entry of data.

Soft Keys – At the bottom of each screen are four (4) Soft Keys descriptions which are associated with the 4 keys immediately below them. Depending on the screen, the soft keys may be used to select different views, enter data such as setpoints or passwords, select from a list of options, or initiate a function such as performing a test or copying a module’s configuration.
Keypad Functions

Figure 9-3. ProTech-SX Faceplate

Unless defined otherwise for a particular screen, the keys have the following functions:

- **ESC** Navigates up one menu in the hierarchy of the selected menu tree. If modifying a value, ESC exits edit mode and restores the value without saving the changes.
- **HOME** Navigates to the Home screen.
- **START** One source of the Start command signal defined elsewhere in this manual.
- **RESET** One source of the Reset command signal defined elsewhere in this manual.
- **Up Arrow** Navigate up through the menus or displayed pages.
- **Down Arrow** Navigate down through the menus or displayed pages.
- **Right Arrow** Scroll through the configurable Inputs and Logic menus.
- **Left Arrow** Scroll through the configurable Inputs and Logic menus.
- **ENTER** Select from the menu, or edit a specific value in configuration.
- **VIEW** Displays the Trip Log or Alarm Log, respectively.

Tripped Indicator Illuminates the color RED when a Trip condition exists.

Unit Health Indicator Illuminates the color GREEN when the ProTech-SX module is functioning properly. Illuminates the color RED when there is an internal ProTech-SX module fault.

Alarm Indicator Illuminates the color YELLOW when an Alarm condition exists.
Navigation

Pressing the Soft Keys, located below the “Monitor Menu”, “View Logs”, “Config Menu”, and “Test Menu”, screen labels will bring up the associated menu for that category. Use the Up/Down arrows to navigate through the respective menu items, Select Enter to open the associated screen.

Home

On power-up, the “Home” page is displayed. The “Home” screen shows the sensed speed and provides access to the soft keys to select from the four main menus. Selecting “HOME” brings up the “Home” screen. Selecting “ESC” repeatedly navigates up through the menu hierarchy until the “Home” screen is displayed.

With an Alarm

![Home screen (with Alarm)](image)

With a Trip

![Home screen (with Trip)](image)
Passwords

The ProTech-SX utilizes two password levels: a Test Level Password and a Config Level Password. The same passwords are used by the Programming and Configuration Tool (PCT) and Front Panel.

The Test Level Password is required to:
- Initiate tests
- Reset logs (except for the Peak Speed/Acceleration Log)
- Change the Test Level Password

The Config Level Password provides access to any function that requires the Test Level Password. Additionally, the Config Level Password is required to:
- Change any program setting
- Download an application program file into a module
- Reset the Peak Speed/Acceleration Log.
- Change the Config Level Password

Each of these passwords meets NERC (North American Electric Reliability Corporation) cyber security requirements.

The default password for both the Test and Config Levels is “AAAAAA”.

Password Entry

When prompted for a password, the screen below appears.

- The password is six characters long and can be configured using upper and lower case alpha characters, numeric characters, and some special symbols (#, @, !, <, etc.).
 - Use the “Aa 0-9 @” soft key to select upper case letters, lower case letters, numbers, or a list of usable special characters.
 - Use the “Value ▼” or “Value ▲” soft keys to change the highlighted value.
 - Use the “Cursor →” soft key to move the highlighted character to the right.
- Press the Enter Key after the password is selected. If the password is invalid, an error message will appear at the bottom of the screen; otherwise, the password is accepted and the next screen provides access to the password change function.

![Password Entry Screen](Figure 9-6. Password Entry Screen)
Monitor Menu

From the "Monitor Menu" the user can view configuration settings, real time values, and status indications. When the "Monitor Menu" is selected from the soft keys, the following menu is shown:

<table>
<thead>
<tr>
<th>Monitor Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Trip Latch</td>
</tr>
<tr>
<td>Alarm Latch</td>
</tr>
<tr>
<td>Event Latches</td>
</tr>
<tr>
<td>Trip Cycle Time Monitors</td>
</tr>
<tr>
<td>Dedicated Discrete Inputs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Latch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Latch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Latches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Cycle Time Monitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dedicated Discrete Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurable Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurable Logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable Relays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Fail Timer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modbus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date / Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Information</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The “Up Arrow” and “Down Arrow” keys are used to highlight the desired submenu item. Pressing the “ENTER” key will open the highlighted item screen. The following items are available from the Monitor Menu:

- Summary
- Trip Latch
- Alarm Latch
- Event Latches
- Trip Cycle Time Monitors
- Dedicated Discrete Inputs
- Configurable Inputs
- Configurable Logic
- Programmable Relays
- Speed Inputs
- Speed Fail Timer
- Analog Output
- Modbus
- Date / Time
- Module Information

Detailed information on the contents of these screens and examples follows:

Monitor/ Summary (Page 1)

- Speed—Current value of speed in rpm.
- Acceleration—Current value of acceleration in rpm/s.
- Overspeed Trip Setpoint—Current setting for overspeed trip in rpm.
- Speed Fail Override Status—Condition of the override.
- Analog Output—Current value of Analog Output in mA.
- Date—Current date.
- Time—Current time.
Use the “Down Arrow” and “Up Arrow” keys to scroll between Monitor Summary pages.

Monitor Summary (Page 2)
- Input—Number of the configurable input.
- Name—Application/customer name for that configurable input.
- Value—Current status. Analog value is based on the input scaling.
- Unit—Units configured for the input (PSI shown as example).
Monitor Summary (Page 3)

- Programmable Relay Status.

<table>
<thead>
<tr>
<th>Programmable Relay</th>
<th>Alarm</th>
<th>Programmable Relay</th>
<th>Not Connected</th>
<th>Programmable Relay</th>
<th>Not Connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRUE</td>
<td>2</td>
<td>FALSE</td>
<td>3</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Page 3 of 3

Monitor/ Trip Latch
Displays the status of any latched trip conditions and first out information. All trip conditions are latched and require a reset command to clear the fault indication. The First Out column indicates which of possible multiple conditions was the first to cause a trip condition.

The following trips are always displayed:
- Internal Fault Trip—Indicates a failure internal to the SX. Additional details on the fault cause are provided in the PCT’s Module Faults Log.
- Power Up Trip—Indicates a power-up condition was detected. Only provided if configured as de-energize to trip.
- Configuration Trip—Indicates new configuration settings were loaded into the module. Pressing the Reset button will clear the error.
- Parameter Error—Indicates a parameter error was detected, meaning there was a problem reading the settings out of the ProTech non-volatile memory during initial startup. When this is true, the ProTech-SX remains in a tripped state. The configuration must be re-loaded from the PCT and a power cycle is required to clear this error.
- Overspeed Trip—Indicates an overspeed trip.
- Spd 1 Open Wire Trip—Indicates an open wire on the speed input. Only available when configured for passive probe type and when speed redundancy mode is configured as ‘Single Speed’.

The following trips are displayed when configured:
- Speed 1 Lost Trip—Indicates a loss of speed trip on speed input 1. Only available when Sudden Speed Loss is configured as ‘Trip’.
- Speed 2 Lost Trip—Indicates a loss of speed trip on speed input 2. Only available when Sudden Speed Loss is configured as ‘Trip’ and speed redundancy mode is configured as ‘Dual Redundant Speed’.
- Red. Speed Loss Trip—Indicates a loss of both speed inputs. Only available when Redundant Speed Loss is configured as ‘Trip’ and speed redundancy mode is configured as ‘Dual Redundant Speed’.
- Overaccel Trip—Indicates an overacceleration trip.
- Speed Lost Trip—Indicates a sudden loss of speed.
- Speed Fail Trip—Indicates speed detected below the fail threshold.
- Speed Fail Timeout Trip—Indicates lack of speed detected during a start condition.
• Resettable Trip—Indicates a trip commanded by the resettable trip function’s discrete input.
• Trip Latch xx or the “user-defined” Name for Trip Latch Number xx—Indicates a trip condition caused by the configured trip latch input.

<table>
<thead>
<tr>
<th>Monitor Trip Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latch Input Name</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Internal Fault Trip</td>
</tr>
<tr>
<td>Power Up Trip</td>
</tr>
<tr>
<td>Configuration Trip</td>
</tr>
<tr>
<td>Parameter Error</td>
</tr>
<tr>
<td>Overspeed Trip</td>
</tr>
<tr>
<td>Speed Probe Open Wire</td>
</tr>
</tbody>
</table>

Figure 9-11. Monitor Trip Latch

Monitor/Alarm Latch
Displays the status of any latched alarm conditions. All alarm conditions are latched and require a reset command to clear the fault indication. The following alarms are always displayed:
• Internal Fault Alarm—Indicates a failure internal to the ProTech-SX. Additional details on the fault cause are provided in the PCT’s Module Faults Log.
• Power Supply 1 Fault—Out of range input power detected on Input #1.
• Power Supply 2 Fault—Out of range input power detected on Input #2.
• Tmp Overspeed Setpoint On—Temp Overspeed Setpoint Test Active.
• Manual Sim. Speed Test—Manual Simulated Speed Test Active.
• Auto Sim. Speed Test—Auto Simulated Speed Test Active.

The following alarms are displayed when configured:
• Speed 1 Lost Alarm—Indicates a sudden loss of speed alarm on speed input 1. Only available when Sudden Speed Loss is configured as ‘Alarm’.
• Speed 2 Lost Alarm—Indicates a sudden loss of speed alarm on speed input 2. Only available when Sudden Speed Loss is configured as ‘Alarm’ and speed redundancy mode is configured as ‘Dual Redundant Speed’.
• Spd 1 Open Wire Alarm—Indicates an open wire on speed input 1. Only available when configured for passive probe type and when speed redundancy mode is configured as ‘Dual Redundant Speed’.
• Spd 2 Open Wire Alarm—Indicates an open wire on speed input 2. Only available when speed redundancy mode is configured as ‘Dual Redundant Speed’.
• Red. Speed Loss Alarm—Indicates a loss of both speed inputs. Only available when Redundant Speed is configured as ‘Alarm’ and speed redundancy mode is configured as ‘Dual Redundant Speed’.
• Speed Difference Alarm—Indicates a speed difference condition between speed input 1 and speed input 2. Only available if speed redundancy mode is configured as ‘Dual Redundant Speed’.
• Speed Fail Alarm—Indicates speed detected below the fail threshold.
• User Defined Test 1-3—User Defined Test Active.
• Trip Time Mon 1-2 Alarm—Indicates Trip Cycle Time Monitor time exceeded.
• Alarm Latch xx or the “user-defined” Name for Alarm Latch Number xx — Indicates an alarm condition caused by the configured alarm latch input.

<table>
<thead>
<tr>
<th>Monitor Alarm Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALARMS PRESENT</td>
</tr>
<tr>
<td>Latch Input Name</td>
</tr>
<tr>
<td>Internal Fault Alarm</td>
</tr>
<tr>
<td>Power Supply 1 Fault</td>
</tr>
<tr>
<td>Power Supply 2 Fault</td>
</tr>
<tr>
<td>Tmp Ovrspd Setpoint On</td>
</tr>
<tr>
<td>Manual Sim. Speed Test</td>
</tr>
<tr>
<td>Auto Sim. Speed Test</td>
</tr>
</tbody>
</table>

![Figure 9-12. Monitor Alarm Latch](image)

Monitor Event Latches
• Monitor configurable event latches—Shown with events present.

<table>
<thead>
<tr>
<th>Monitor Event Latch 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENTS PRESENT</td>
</tr>
<tr>
<td>Latch Input Name</td>
</tr>
<tr>
<td>My Event</td>
</tr>
</tbody>
</table>

Reset: Reset Function State: FALSE
Press ENTER to branch to input

![Figure 9-13. Monitor Event Latch](image)

Monitor Trip Cycle Timer Monitors
• Monitor time between trip and acknowledgement of that trip.

<table>
<thead>
<tr>
<th>Monitor Trip Cycle Time Monitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Cycle Time Monitor 1</td>
</tr>
<tr>
<td>Trip Cycle Time</td>
</tr>
<tr>
<td>Trip Cycle Alarm</td>
</tr>
<tr>
<td>Trip Indicator Input</td>
</tr>
</tbody>
</table>

NOT USED
Press ENTER to branch to input

![Figure 9-14. Monitor Trip Cycle Time Monitors](image)
Monitor/ Dedicated Discrete Inputs
- Condition of the Start, Reset and Speed Fail Override Inputs.
- Start Input—Start Input Active.
 NOTE: This is TRUE if either the Front Panel START key or the START discrete input is active.
- Reset Input—Reset Input Active.
- Speed Fail Override Input—Speed Fail Override Input Active.

<table>
<thead>
<tr>
<th>Monitor Dedicated Discrete Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Input (or Start Button)</td>
</tr>
<tr>
<td>Reset Input</td>
</tr>
<tr>
<td>Speed Fail Override Input</td>
</tr>
</tbody>
</table>

Figure 9-15. Monitor Dedicated Discrete Inputs

Monitor/ Configurable Inputs
- Monitor the configuration and status of the seven configurable inputs.

<table>
<thead>
<tr>
<th>Monitor Configurable Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 3</td>
</tr>
<tr>
<td>My Discrete CH3</td>
</tr>
<tr>
<td>TRUE</td>
</tr>
</tbody>
</table>

Figure 9-16. Monitor Configurable Inputs
Monitor/ Configurable Logic

- Monitor the configuration, setting, and status of configurable logic. In all the following screens, when an Input Source is highlighted and “Press ENTER to branch to input” appears in the screen message area, selecting “ENTER” will bring up the monitor screen associated with that source. Also, when an Input Source is highlighted, selecting “Up Arrow” or “Down Arrow” will highlight other inputs to the function.

Figure 9-17. Monitor Analog Comparator

Figure 9-18. Monitor Logic Gates

Figure 9-19. Monitor Timer
Monitor/ Programmable Relays

- Monitor the configuration, setting, and status of the programmable relays. NOTE: the TRUE or FALSE indication represents the state of the signal driving the relay. Since the polarity for the relay may be “Inverting” or “Non Inverting”, this does not necessarily reflect the state of the relay.
Monitor/ Speed Input

- Monitor speed and acceleration.

Monitor Speed Input

<table>
<thead>
<tr>
<th>Speed</th>
<th>3000 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>0 RPM/s</td>
</tr>
</tbody>
</table>

Figure 9-23. Monitor Speed Input (Single Speed)

Monitor Speed Inputs

<table>
<thead>
<tr>
<th>Speed 1</th>
<th>0 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration 1</td>
<td>0 RPM/s</td>
</tr>
<tr>
<td>Speed 2</td>
<td>0 RPM</td>
</tr>
<tr>
<td>Acceleration 2</td>
<td>0 RPM/s</td>
</tr>
</tbody>
</table>

Figure 9-24. Monitor Speed Input (Dual Redundant Speed)

Monitor/ Speed Fail Timer

- Monitor speed fail timer.

Monitor Speed Fail Timer

Timer Running

Time remaining: **00:00:14**

<table>
<thead>
<tr>
<th>Speed</th>
<th>50 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Fail Setpoint</td>
<td>100 RPM</td>
</tr>
</tbody>
</table>

Figure 9-25. Monitor Speed Fail Timer
Timer Inactive: Timer not used or not started

Timer Running: Timer started, time remaining displayed. Timer starts when the Start button is pressed or the Start discrete signal occurs.

Timer Expired: Indicates Timer reached zero

Note: The Speed Fail Timeout trip is reset by the Reset command. Note: If the Speed Fail Timer is active, the Home screen will display the time remaining.

Monitor/ Analog Output
Monitor speed and analog output value. Note that this value is the current that the ProTech-SX is attempting source. For example, if the analog output is disconnected, the output will display 12 mA, but the actual current will be 0 mA. See Chapter 3 for analog output specifications.

<table>
<thead>
<tr>
<th>Monitor/ Analog Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Analog Output</td>
</tr>
</tbody>
</table>

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-26. Monitor Analog Output

Monitor/ Modbus® *
- Monitor Modbus status.

*—Modbus is a trademark of Schneider Automation Inc.

<table>
<thead>
<tr>
<th>Monitor/ Modbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus Link Status</td>
</tr>
<tr>
<td>LINK ERROR</td>
</tr>
</tbody>
</table>

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-27. Monitor Modbus Status
Link OK: Modbus® Link OK
Link Error: Modbus® Link not operating properly. This could be from a physical connection problem (wiring, connectors), incorrect mode (RS-232/RS-485), BAUD rate, or slave address settings.

Monitor/Set Date & Time
The screen is used to monitor and set the current date and time. The date automatically accounts for leap year. The time setting must be re-set for all local time changes (e.g. daylight saving time).

<table>
<thead>
<tr>
<th>Monitor/Set Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 24 Jan 2010</td>
</tr>
<tr>
<td>Time 12:17:15</td>
</tr>
</tbody>
</table>

Press ENTER to set time

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
</table>

Figure 9-28. Monitor Date & Time

To set the Time and Date, press the "ENTER" key.

<table>
<thead>
<tr>
<th>Monitor/Set Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 24 Jan 2010</td>
</tr>
<tr>
<td>Time 12:17:15</td>
</tr>
</tbody>
</table>

Press ENTER to edit item

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
</table>

Figure 9-29. Set Date & Time
The field to be edited will be highlighted. Pressing the UP/DOWN/RIGHT/LEFT arrows will highlight other fields. Press ENTER to edit the highlighted item and use the soft keys as indicated to adjust the value to the desired value.

<table>
<thead>
<tr>
<th>Monitor/Set Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 08 Jun 2010</td>
</tr>
<tr>
<td>Time 14:51:52</td>
</tr>
<tr>
<td>Value ▼</td>
</tr>
<tr>
<td>Value ▲</td>
</tr>
<tr>
<td>Cursor ←</td>
</tr>
<tr>
<td>Cursor →</td>
</tr>
</tbody>
</table>

Figure 9-30. Set Date & Time

Select ENTER to save the change or ESC to return the value to its original value. Set other fields as required. After all changes have been made use the soft keys to either “Set Time” or “Cancel”.

<table>
<thead>
<tr>
<th>Monitor/Set Date & Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date 08 Jun 2010</td>
</tr>
<tr>
<td>Time 14:55:00</td>
</tr>
</tbody>
</table>

Press ENTER to edit item

| Set Time | Cancel |

Figure 9-31. Save Date & Time

Selecting ESC is the same as “Cancel” and the time and date remain at the original values.
Monitor/ Module Information

- Displays Product ID, Module S/N, and Software P/N and revision.

<table>
<thead>
<tr>
<th>Monitor Module Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
</tr>
<tr>
<td>Module S/N</td>
</tr>
<tr>
<td>Software P/N</td>
</tr>
</tbody>
</table>

View Logs

From the “View Logs” screens the user can view logged events with corresponding time stamps. Logged data can be viewed and exported to a file using the Programming and Configuration Tool (PCT).

The time stamps in the logs are based on the internal clock at the time of the event. Time stamps are not changed when the internal clock time is modified (e.g. time/date is set or a 24 Hr time sync command).

When the “View Logs” is selected from the soft keys, the following menu is shown:

<table>
<thead>
<tr>
<th>Logs Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overspeed/Acceleration Log</td>
</tr>
<tr>
<td>Trip Log</td>
</tr>
<tr>
<td>Alarm Log</td>
</tr>
<tr>
<td>Trip Cycle Time Log</td>
</tr>
<tr>
<td>Event Log 1</td>
</tr>
<tr>
<td>Event Log 2</td>
</tr>
</tbody>
</table>

Figure 9-32. Monitor Module Information

Figure 9-33. Alarm Log Menu
The “Up Arrow” and “Down Arrow” keys are used to highlight the desired Log. Pressing the “ENTER” key will open the highlighted Log screen. The following items are available from the Logs Menu:

- Overspeed/Acceleration Log
- Trip Log
- Alarm Log
- Trip Cycle Time Log
- Event Log 1
- Event Log 2
- Event Log 3
- Peak Speed/Acceleration Log
- Reset Logs

Detailed information on the contents of these screens and examples follows:

Overspeed/Acceleration Log

- Log of any overspeed or acceleration trip events.
- Displays the cause of a trip (Overspeed or Overacceleration)
- Displays the date and time of the trip
- Displays the speed and acceleration at the time of the trip
- Displays the maximum speed and acceleration reached after the trip.
- Displays time and date stamp, actual values, and configured trip values.

![Figure 9-34. Overspeed/Overacceleration Log](image)

TEST will appear next to the time in RED if the module was in test mode at the time of the trip.
Trip Log

- Log of any trip events. Displays event ID, time and date stamp, first out, and test information.

The first-out (FO) symbol indicates the event(s) that caused the trip. Events that occurred while a test mode was active are noted in the Test column. An example would be an Overspeed trip that occurred during a Manual Overspeed test.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Event ID</th>
<th>Time Stamp</th>
<th>FO Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Trip</td>
<td>2010-01-24 12:15:37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>2010-01-24 12:15:26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overacceleration Trip</td>
<td>2010-01-24 12:14:21</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Speed Fall Trip</td>
<td>2010-01-24 12:13:53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Lost Trip</td>
<td>2010-01-24 12:13:53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration Trip</td>
<td>2010-01-24 12:13:26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>2010-01-24 12:13:15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9-35. Trip Log

Alarm Log

- Log of any alarm events.
- Displays event ID, time and date stamp, and test information.

Events that occurred while a test mode was active are noted in the Test column. An example would be a Manual Overspeed test.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Event ID</th>
<th>Time Stamp</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Fail Alarm</td>
<td>2010-01-24 12:13:53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Time Mon 1 Alarm</td>
<td>2010-01-24 11:56:48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 2 Fault</td>
<td>2010-01-24 11:04:02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 2 Fault</td>
<td>2010-01-24 10:49:48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 9-36. Alarm Log
Trip Cycle Time Log
• Log of any trip cycle time events, and the information for Trip Cycle Time Monitor 1 and 2.

<table>
<thead>
<tr>
<th>Trip</th>
<th>2010-06-09 10:21:08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Input 3</td>
<td>0.728 s</td>
</tr>
<tr>
<td>Discrete Input 3</td>
<td>0.728 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trip</th>
<th>2010-06-09 10:19:07</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Input 3</td>
<td>1.388 s</td>
<td></td>
</tr>
<tr>
<td>Discrete Input 3</td>
<td>60.000 s</td>
<td></td>
</tr>
</tbody>
</table>

Events Logs 1, 2 & 3
• Log of any configured events; displays event ID, time and date stamp, first out, and test information.

<table>
<thead>
<tr>
<th>Event Id</th>
<th>Time Stamp</th>
<th>ID</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Event</td>
<td>2010-06-09 09:41:07</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 09:40:35</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 09:07:04</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 08:38:58</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 08:37:12</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 08:18:37</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>My Event</td>
<td>2010-06-09 08:16:57</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Figure 9-37. Trip Cycle Time Log

Figure 9-38. Event Log
Peak Speed/Acceleration Log

- Log of peak speed and acceleration recorded since the saved values were last cleared.

<table>
<thead>
<tr>
<th>Peak Speed/Acceleration Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Speed</td>
</tr>
<tr>
<td>Peak Acceleration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
</table>

Figure 9-39. Peak Speed/Accel Log

Reset Logs

- Allows the user to reset All Logs (Trip, Alarm, Events, Overspeed/Overacceleration, and Trip Cycle Time Monitor Logs), or just the Peak Speed/Acceleration log.

<table>
<thead>
<tr>
<th>Reset Logs Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Logs</td>
</tr>
<tr>
<td>Peak Speed/Acceleration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
</table>

Figure 9-40. Reset Logs

Reset Log Procedure

1. Use the Up Down arrows to select reset “All Logs” or “Peak Speed/Acceleration” and press Enter.
2. At the Prompt to “Reset Logs?” or “Reset Peak Speed/Acceleration”, select Reset to continue, or Cancel to back out of this screen
3. If Reset is selected, the user will be prompted to enter a password. To reset All Logs, either the Test or Config level passwords may be entered. To reset Peak Speed/Acceleration, the Config Level Password must be entered
4. After the correct password is entered, press Enter to reset the log.
Configure Menu

The user can configure the standard values from the front panel, such as speed, acceleration, analog output scaling, etc. The Programming and Configuration Tool (PCT) must be used to configure custom logic, timers, latches, and events. The unit must be in a tripped condition for any configuration parameters to be changed whether the Front Panel or the PCT are used.

The “Up Arrow” and “Down Arrow” keys are used to highlight the desired Configure Menu. Pressing the “ENTER” key will open the highlighted Configure screen. The following items are available from the Configure Menu:

- Speed
- Trip Latch
- Analog Output
- Test Modes
- Modbus
- Configuration Management
- Change Password

Entering the Edit Mode from the Front Panel

When a value that can be edited is highlighted, the Screen Message “Press ENTER to Edit value” appears. If the module is not Tripped and ENTER is selected the Screen Message “Module Not Tripped!” appears briefly (for about 5 seconds). If the module is tripped and ENTER is selected, the Password Entry screen appears. When the correct Config Level Password is entered, the fields can be edited with the soft key selections.
Once a password has been successfully entered, it will remain in effect until the user exits the configuration menu tree.

Configuration Procedure

1. Module must be tripped to make any configuration changes.
2. Use the Up / Down function keys to select the category.
3. Use the Up / Down function keys to select the parameter.
4. Press Enter to edit a value and the password screen will appear.
5. Select the password for Config level, and press Enter.
6. The screen is now in edit mode. Using the soft keys, edit the desired value:
 a. Use the Cursor ← key to move to the left.
 b. Use the value ▼or ▲ keys to change the highlighted value.
 c. Use the Cursor → key to move to the right.
7. Navigate within the Config Menu to other editable values using Front Panel UP/Down Keys and ESC / Enter keys to change pages.
8. After all desired parameters have been changed; press the Home key to exit Configure Mode.
9. If any parameters were changed in Configure Mode, the SX will display a prompt “Save Configuration”. The options are:
 a. Save – to save any changes then display the Home screen
 b. Discard – to ignore any changes then display the Home screen
 c. Cancel – to go back to the last used configuration screen

NOTE: This does not exit the configure mode so re-entering the Password will not be required if ENTER is selected to edit a value.
Editing Values from the Front Panel
Once a valid password has been entered, the parameter is highlighted. If the parameter is a value or string, a cursor indicates which digit or character is being edited. The soft keys are used to change the digit or character and to move the cursor. The screen message is used to indicate valid ranges or to select from a list of options (i.e. ACTIVE or PASSIVE, TRIP or ALARM, DE_ENERGIZE TO TRIP OR ENERGIZE TO TRIP). Selecting ESC restores a value being edited to its last entered value.

<table>
<thead>
<tr>
<th>Configure Speed Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 Probe Type</td>
</tr>
<tr>
<td>Input 2 Probe Type</td>
</tr>
<tr>
<td>Nr of Gear Teeth</td>
</tr>
<tr>
<td>Gear Ratio</td>
</tr>
<tr>
<td>Overspeed Trip</td>
</tr>
<tr>
<td>Sudden Speed Loss</td>
</tr>
</tbody>
</table>

If an attempt is made to adjust a value outside of its permitted range, the value is changed to its closest valid value and the message "LIMIT REACHED" appears briefly (for about 5 seconds) next to the Screen Message that indicates the valid range.

Configure Speed
- Set values for speed manager, speed inputs, acceleration, and start logic.

<table>
<thead>
<tr>
<th>Configure Speed Submenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Manager</td>
</tr>
<tr>
<td>Speed Inputs</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Start Logic</td>
</tr>
</tbody>
</table>

- Configure Speed Manager—Set the following parameters.
 - Speed Redundancy
 - In single speed mode, only speed input # 1 is active.
 - In dual redundant speed mode, the following actions are taken:
 - If Speed Channel 2 is lost and Speed Channel 1 is OK, select Speed Channel 1
 - If Speed Channel 1 is lost and Speed Channel 2 is OK, select Speed Channel 2
- Otherwise use High-Signal-Select algorithm is used as described in the following table:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Selected Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Input 1 > Speed Input 2</td>
<td>Speed Input 1</td>
</tr>
<tr>
<td>Speed Input 2 > Speed Input 1</td>
<td>Speed Input 2</td>
</tr>
<tr>
<td>Speed Input 1 = Speed Input 2</td>
<td>Speed Input 1</td>
</tr>
</tbody>
</table>

- Max Speed Difference
 - An alarm is generated if speed input and speed input 2 differ by more than the number entered in this field

- Redundant Speed Loss
 - This field can be set as an Alarm or TRIP in the event that one of the two speed inputs is lost. A speed input loss is defined as:
 - Sudden Speed Loss
 - Speed Probe Open Wire

Configure Speed Manager

- **Speed Redundancy**: SINGLE SPEED
- **Max. Speed Difference**: 100 RPM
- **Redundant Speed Loss**: TRIP

Press ENTER to edit value

<table>
<thead>
<tr>
<th>Monitor Menu</th>
<th>View Logs</th>
<th>Config Menu</th>
<th>Test Menu</th>
</tr>
</thead>
</table>

- Configure Speed Input—Set the following parameters.
 - Both speed inputs use the same parameters for gear ratio and number of gear teeth.
• Configure Acceleration—Set the following parameters.

<table>
<thead>
<tr>
<th>Configure Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Acceleration Trip</td>
</tr>
<tr>
<td>Accel. Trip Enabled Speed</td>
</tr>
<tr>
<td>Acceleration Trip</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

Monitor Menu | View Logs | Config Menu | Test Menu

• Configure Start Logic—Set the following parameters.

<table>
<thead>
<tr>
<th>Configure Start Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Fail Setpoint</td>
</tr>
<tr>
<td>Speed Fail Trip</td>
</tr>
<tr>
<td>Speed Fail Alarm</td>
</tr>
<tr>
<td>Speed Fail Timeout Trip</td>
</tr>
<tr>
<td>Speed Fail Timeout Time</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-43. Configure Start Logic

Configure Trip Latch

• Set action of the Trip Latch (Energize or De-energize to Trip).

<table>
<thead>
<tr>
<th>Configure Trip Latch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Configuration</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-44. Configure Trip Latch
Configure Analog Output

- Scale the analog output to RPM.

<table>
<thead>
<tr>
<th>Configure Analog Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed @ 4mA</td>
</tr>
<tr>
<td>Speed @ 20mA</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

| Monitor Menu | View Logs | Config Menu | Test Menu |

Figure 9-45. Configure Analog Output

Configure Test Modes

- Set parameters for internal test modes.
 - Temporary Overspeed Trip – The value that the Overspeed Trip setpoint will be changed to while the Temporary Overspeed Trip Test is active.
 - Temp Overspeed Trip Timeout - How long the unit will stay in this test mode, before aborting the test (0-30 minutes).
 - Simulated Speed Timeout - How long the unit will stay in the Auto or Manual Simulated Speed Test, before aborting the test (0-30 minutes).

<table>
<thead>
<tr>
<th>Configure Test Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Overspeed Trip</td>
</tr>
<tr>
<td>Temp. Overspeed Trip Timeout</td>
</tr>
<tr>
<td>Simulated Speed Timeout</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

| Monitor Menu | View Logs | Config Menu | Test Menu |

Figure 9-46. Configure Test Modes
Configure Modbus—Set Parameters for Modbus Communications

- The optional modes are RS-232 or RS-485.
 - Set BAUD rate, parity and slave address
 - Enable Write Commands: NO prevents Modbus data from using write commands, YES allows use of the commands
 - The write commands are Reset, User Defined tests 1 – 3, and Auto Simulated Speed Test.

<table>
<thead>
<tr>
<th>Configure Modbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Baud Rate</td>
</tr>
<tr>
<td>Communication Parity</td>
</tr>
<tr>
<td>Slave Address</td>
</tr>
<tr>
<td>Enable Write Commands</td>
</tr>
</tbody>
</table>

Press ENTER to edit value

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-47. Configure Modbus

Configuration Management Menu

<table>
<thead>
<tr>
<th>Configuration Management Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Overview</td>
</tr>
</tbody>
</table>

Monitor Menu | View Logs | Config Menu | Test Menu

Figure 9-48. Configuration Management Menu
• Configuration Overview—CRC values for configurable parameters. Refer to the Configuration Overview section in Chapter 10, Programming and Configuration Tool, for more information on CRC values.

<table>
<thead>
<tr>
<th>Configuration Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration CRC 0x5816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter Block</th>
<th>CRC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Manager</td>
<td>0xA583</td>
</tr>
<tr>
<td>Speed Sense</td>
<td>0x6897</td>
</tr>
<tr>
<td>Overaccel Trip</td>
<td>0xC0FE</td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>0x5D64</td>
</tr>
<tr>
<td>Start Logic</td>
<td>0x1676</td>
</tr>
<tr>
<td>Analog Output</td>
<td>0x4F28</td>
</tr>
</tbody>
</table>

Password Change Menu
- Allows the user to change the Test Level or Configuration Level passwords.
- The current password must be re-entered before any changes can be made.

Password Change Procedure
1. Select the level of password to change.
2. At the Change Password prompt select Yes to continue, or Cancel to back out of this screen.
3. If changing the Test Level Password, either the current Test or Configure password may be entered. If changing the Config Level Password, the current Configure password must be entered.
4. After successfully selecting the correct password, press Enter.
5. The user must now select the NEW password for that level.
 a. Use the Aa 0-9 @ soft key to select upper case letters, lower
case letters, numbers, or a list of usable special characters.
 b. Use the value ▼or ▲ keys to change the highlighted value.
 c. Use the Cursor → key to move the highlighted character to the
right.

6. Once the new password has been selected press Enter to save it.
The default password for both the Test and Config Levels is “AAAAAA”.

7. A message will appear to confirm that the password has been
changed.

IMPORTANT There is no means to reset the password if it is forgotten. Units
requiring a password reset must be returned to Woodward.

Test Modes Menu

The Test Modes Menu provides access to all of the ProTech-SX tests. The user
can initiate any configured test via the front panel. The Test or Config Level
password must be entered to start any of these tests except for the Lamp Test.

The system is equipped with several internal test routines to verify configurable
logic and that parameters are working correctly. The test menu of the ProTech-
SX keypad contains following tests (details for each of these tests are provided in
the following sections):

- **Temporary overspeed setpoint** - This is an overspeed test with adjusted
test speed setpoint executed with the real hardware speed signal from the
rotating machine. The speed of the rotating machine must be raised within
the allowed test time span in order to test trip action. If the overspeed
setpoint is not exceeded within this time span, the overspeed test is aborted.

- **Manual simulated speed test** - This is an overspeed test with the speed
setpoint that is valid for the machine executed with a simulated speed signal
from an internal frequency generator that initiates at the overspeed setpoint
minus 100 rpm and must be manually raised within the allowed time span to
above the overspeed setpoint in order to test the trip action. If the overspeed
setpoint is not exceeded within this time span, the overspeed test is aborted.

- **Auto simulated speed test** - This is an overspeed test with the speed
setpoint that is valid for the machine executed with a simulated speed signal
from an internal frequency generator that initiates at the overspeed setpoint
minus 100 rpm and is automatically raised to above the overspeed setpoint
in order to test the trip action. If the overspeed setpoint is not exceeded
within the requested time span, the overspeed test is aborted.

- **User defined test 1**
- **User defined test 2**
- **User defined test 3**
- **Lamp Test** - The Lamp Test is provided to verify front panel LED
 functionality.
In general, a test may not be started if the module is tripped or in test mode already. The exception is the Lamp Test, which can be applied at any time without a password. If a test is not permitted, or aborted, the following messages explain the cause:

- **Module Already Tripped! Test Aborted** – Indicates that the test cannot be started because the module is already tripped.
- **Test in Progress** - Indicates that the test cannot be started because the module is already in a test mode.

Temporary Overspeed Setpoint Test
- Temporary Overspeed Trip Setpoint—Trip setting for testing.
- Actual Speed—Current Actual Speed.
- Overspeed Trip Setpoint—Configured Actual Overspeed Setpoint.

![Figure 9-51. Test Modes Menu](image)

![Figure 9-52. Temporary Overspeed Test](image)
Temp. Overspeed Test Procedure

To configure this test, see “Configure Test Modes Procedure” in the section above. See Chapter 3 for a full description of this test.

1. Module cannot be tripped to run this test.
2. Press the Start Test softkey.
3. Select the password for Test or Config level.
4. To run the test press Apply, or press Cancel to exit.
5. The Temp Overspeed Trip Timer will be displayed and counting down.
6. The user can end the test and restore the Overspeed Trip Setpoint to the Configured Actual Overspeed Setpoint.
7. If the Timer expires before the test has ended, the unit will display a message “Test Time Expired”, and revert back to the Start test screen.

<table>
<thead>
<tr>
<th>Temporary Overspeed Setpoint Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Overspeed Trip Setpoint</td>
</tr>
<tr>
<td>2000 RPM</td>
</tr>
<tr>
<td>Actual Speed</td>
</tr>
<tr>
<td>Overspeed Trip Setpoint</td>
</tr>
</tbody>
</table>

Test Time Remaining 00:00:25

Temporary Overspeed Trip Setpoint Active

End Test

The following Messages may be seen on the Temp. Overspeed Threshold Test page:

Temporary Overspeed Trip Setpoint Active - Indicates the Temporary Overspeed Trip Test is active (and the current speed is less than the Overspeed Trip Setpoint).

Speed > Overspeed Trip Setpoint! - Indicates the Temporary Overspeed Trip Test is active and the current speed is greater than the Overspeed Trip Setpoint. When the test is ended by the user or when the Test Time is Expired, the module will trip.

Test Time Expired - Indicates the timer has reached zero.

Test Ended by Modbus - Indicates the test was ended by a Modbus command.

Simulated Speed Test (Manual & Auto)
- Test Mode—Manual or Auto.
- Actual Speed—Current Actual Speed.
- Overspeed Trip Setpoint—Configured Actual Overspeed Setpoint.
NOTE: The resolution of the internal simulated speed decreases as frequency increases. The following table indicates a few spot frequencies. In the following table and graph, it is assumed that a 60 teeth gear is used with a gear ratio of 1, making frequency the same as RPM.

<table>
<thead>
<tr>
<th>RPM</th>
<th>Resolution (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9.5E-5</td>
</tr>
<tr>
<td>100</td>
<td>.0016</td>
</tr>
<tr>
<td>1000</td>
<td>0.16</td>
</tr>
<tr>
<td>10000</td>
<td>2.0</td>
</tr>
<tr>
<td>32000</td>
<td>20.5</td>
</tr>
</tbody>
</table>

The resolution of the internal frequency generator is described in the following graph. The discontinuities in the chart occur when different internal clock scaling occurs to optimize resolution.
The following Messages may be seen on the Manual Simulated Speed Test page:

Manual Simulated Speed Active - Indicates the Manual Simulated Speed Test is active.

Auto Simulated Speed Active - Indicates the Auto Simulated Speed Test is active.

Test Time Expired - Indicates the timer has reached zero.

Test Ended by Modbus - Indicates the test was ended by a Modbus command.

Simulated Speed Test (Auto or Manual) Procedure

To configure this test, see Configure Test Modes Procedure in the section above. See Chapter 3 for a full description of this test.

1. Module cannot be tripped to run this test.
2. Press the Start Test soft key.
3. Select the password for Test or Config level.
4. To run the test press Apply, or press Cancel to exit.
 a. Manual Mode
 i. The Simulated Speed Timeout counter will be displayed and counting down.
 ii. The user can use the value ▼ or ▲ keys to change the simulated speed setting
 iii. If the simulated speed is raised above the trip point, the unit will switch to the Home screen with the Module Trip displayed.
 iv. Select End Test to Exit
 v. If the timer expires before a simulated trip occurs, the unit will display a message Test Time expired and revert back to the Start test Screen.
 b. Auto Mode
 i. The module will automatically start ramping the simulated speed up to the trip point
 ii. When the simulated speed exceeds the trip point, the unit will switch to the Home screen with the Module Trip displayed.
 iii. There is no timer in Auto mode.
 iv. Select End Test to Exit

<table>
<thead>
<tr>
<th>Manual Simulated Speed Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Mode</td>
</tr>
<tr>
<td>Actual Speed</td>
</tr>
<tr>
<td>Overspeed Trip Setpoint</td>
</tr>
<tr>
<td>Simulated Speed</td>
</tr>
<tr>
<td>Test Time Remaining</td>
</tr>
</tbody>
</table>

![Figure 9-56. Simulated Speed Test](image-url)
User Defined Test 1, 2, & 3
User Defined tests are described in chapter 3.

When one of these screens is selected, one of the following status messages will be shown:

NOT CONFIGURED
Test Not Started
Test Ended by:
 a. Front-Panel
 b. Test Timeout
 c. Configurable Logic

User-defined Test Procedure
To configure this test, see Configure User-defined Test Procedure in the section above. See Chapter 3 for a full description of this test.

1. The module cannot be tripped or in the test mode when this test is started.
2. Press the Start Test soft key.
3. Enter the Test or Config Level Password and select “ENTER”.
4. Once the correct password has been entered, the Message “Start User-defined Test X*?” will appear.
5. Press the “Start” soft key to initiate the test or “Cancel” to cancel the test.
6. The User-defined Test Latch will be set and the associated logic executed.
7. During the test, the message User-defined Test X* Active and the Test Time Remaining timer, and the “End Test” soft key are shown.
8. If End Test is selected, the message End Test Mode? will be shown and the soft keys “Yes” and “No” will be shown. Selecting “Yes” will reset the User-defined Test Latch.
9. The test will be ended if the test timer reaches 00:00:00, if the “End Test” soft key is select, if the test is aborted by a Modbus command, or if the Configurable Logic resets the test.

* “X” indicates the number of the User-defined test - 1, 2, or 3

NOTICE
The logic behind the User-defined Test must be validated by the user for all possible modes of operation including normal test, test failure(s), or test abort(s).

<table>
<thead>
<tr>
<th>User-defined Test 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Ended by:</td>
</tr>
<tr>
<td>Trip Condition</td>
</tr>
</tbody>
</table>

Start User-defined Test 1?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td></td>
<td>Cancel</td>
</tr>
</tbody>
</table>

Figure 9-57. User Defined Test
Lamp Test
The Lamp Test is provided to verify the front panel LED functionality. During the test, each LED is cycled off and through the provided color combinations listed below. The test can be repeated as needed. A Cancel function is also available. No password is required to run the test.

Lamp Test Procedure
1. Select Start Test
 a. Tripped LED—Turns red.
 b. Unit Health LED—Turns red, then green.
 c. Alarm LED—Turns yellow.
2. When the test is complete, LEDs return to normal operation.
Chapter 10. Programming and Configuration Tool

General

The ProTech-SX module includes preset Overspeed, Over-acceleration, Alarm Latch, and Trip Latch functionality. It can be custom configured to meet a specific application through the module’s front panel or the provided Programming and Configuration Tool (PCT).

A custom application program is required for use of any of the ProTech-SX logic solver’s configurable inputs and outputs and related functionality. The ProTech-SX includes a software-based PCT that can be loaded onto a computer and used to:

- Create and change custom application programs
- Change overspeed and over-acceleration functionality settings
- Save application and configuration settings to a file
- Download application and configuration settings to a ProTech-SX module
- Upload application and configuration settings from a ProTech-SX module
- Upload and view stored logged files from a ProTech-SX module

A settings file with default settings can also be created from the PCT. Refer to the section in this chapter: New from SID Specification Defaults.

An unsafe condition could occur with improper use of these software tools. Only trained personnel should have access to these tools.

A straight-through serial cable is used to allow the designated computer (with the PCT program loaded on it) to communicate with a ProTech-SX. Refer to Figure 2-18 for cable-specific information. Note that in order to ensure against EMI problems, this cable cannot remain attached to the ProTech SX during normal operation.

The PCT consists of a combination of Woodward’s “ToolKit” HMI (Human Machine Interface) software program and a special ProTech-SX application file. Although the PCT is provided with each ProTech-SX on an included software installation CD, it can also be downloaded from Woodward’s Internet website (www.woodward.com/software).

The PCT is designed to allow off-line (while not connected to the ProTech-SX) program and configuration settings to be generated, saved, then downloaded later into a ProTech-SX. On-Line (while connected to the ProTech-SX) configuration settings can be manipulated. This is an example of a typical process to follow to program and/or make changes to the ProTech-SX via the PCT:

1. Open ToolKit and select a .wset file to modify/edit or create a new one from SID specification defaults.
2. Create program logic or make changes to existing logic.
3. Save the .wset file to a directory on the computer.
4. Connect to the ProTech-SX via the PCT connection wizard.
5. Download the saved .wset file to the ProTech-SX module (module must be in tripped state).
Installation of the PCT

The ProTech-SX control’s PCT is a combination of Woodward’s “Toolkit” software and a special ProTech-SX application program.

Use the following installation procedure to install the PCT (Programming and Configuration Tool).
1. Locate/obtain ProTech-SX PCT Installation CD provided with each ProTech-SX. (Alternatively, the ProTech-SX PCT can be downloaded from Woodward’s Internet website [www.woodward.com/software]).
2. Run the installation program and follow all installation instructions.

Programming and Configuration Tool (PCT) Help

On-Line Programming and Configuration Tool (PCT) help is available and included with the installation of the Programming and Configuration Tool (PCT) product. Help can be accessed from the Programming and Configuration Tool (PCT) ‘Help’ menu located on the Main Window.

Levels of Operation of the Programming and Configuration Tool (PCT)

The ProTech-SX Programming and Configuration Tool (PCT) can be used in different operating levels:
- Isolated from the ProTech-SX (Off-Line)
- Test Level (On-Line)
- Config Level (On-Line)

Isolated level:
- A communication link between PC and ProTech-SX is not required.
- Password is not required.
- The configuration file to be loaded into the ProTech-SX can be created or modified by the Programming and Configuration Tool (PCT).

Test Level:
- A serial communication link with the ProTech SX must be established and operational.
- A password for Test Level is required.
- The configuration file to be loaded into the ProTech-SX can be created by the Programming and Configuration Tool (PCT).
- The configuration file stored in the ProTech-SX can be copied to the PC.
- Log files can be viewed or exported.
- All logs (except Peak Speed and Peak Acceleration) can be reset.

Config Level:
- A serial communication link with the ProTech SX must be established and operational.
- A password for Config Level is required.
- The configuration file stored in the ProTech-SX can be copied to the PC.
- The configuration file created by the Programming and Configuration Tool (PCT), can be uploaded to the ProTech-SX.
- Log files can be viewed, exported, or reset.
- On-Line configuration is enabled.
Using the Programming and Configuration Tool (PCT)

In order to use the ProTech-SX Programming and Configuration Tool (PCT), the following actions must be executed:

1. The correct Toolkit version is supplied with the Installer CD that is provided with the product and must be installed on a PC.
2. Run the Toolkit service tool by double-clicking on the file ProTech-SX.wstool. The following introduction screen will be displayed on the PC.

![On-Line Menu](image)

Figure 10-1. On-Line Menu

The PCT is ready to be used in isolated level. In order to use the PCT in either Test or Config level, the following actions must be executed:

3. A serial interface cable must be installed between PC and the ProTech-SX. The serial cable must be wired as shown in Figure 2-13.
4. Establish communication by using the “connect” function. After pressing “Connect”, the following pop-up window appears which prompts you to select a network:

![Network Selection](image)

Figure 10-2. Network Selection

5. Select the Communication port that the serial interface cable is connected to and click on the Connect button in the pop-up window.

6. When the communication link is established, the following pop-up window appears:

7. Select either “Test Level”, or “Config Level”, and enter the associated Password for the selected level and log in. Select Close if Test or Config level functions are not required.

8. If the communication link cannot be established, the Programming and Configuration Tool (PCT) will continue to attempt to establish the communication link until the Disconnect Button is pressed.

9. After communication has been established, the ProTech-SX Programming and Configuration Tool (PCT) provides two menu options:
 - On-Line Menu
 - Off-Line Menu
The On-Line menu provides seven buttons:

- Edit/View Configuration
- View Configuration Error Log
- View Trip and Alarm Log
- View Overspeed/Acceleration and Trip Cycle Time Log
- View Event Logs
- View Module Faults Log
- Configuration Overview

This menu is always available, however a communication link must be established before the information in the logs is available for monitoring.

Home

Use the "Home" button on the log screen to return to this On-Line Menu after any one of the five logs have been opened.
View Configuration Error Log

After selecting “View Configuration Error Log”, a list of all configuration faults of the configuration that have been loaded in the ProTech-SX is displayed. NOTE: If the configuration has not been changed since the last power cycle, configuration faults do not appear.

Figure 10-4. Configuration Error Log

Configuration faults include warnings and/or errors.

If a configuration warning exists, the configuration is saved to the ProTech-SX.

Configuration warnings can result from logical or analog outputs from any function not being connected.
If a configuration error exists, the configuration is not saved and the following screen appears when trying to upload the settings file to the ProTech-SX.

![Configuration Error Figure](image)

Figure 10-5. Configuration Error

All configuration errors must be resolved before a successful upload of the settings file can be completed. Configuration errors can include:

- Inputs configured as discrete inputs connected to comparators.
- Inputs configured as analog inputs connected to logical inputs.
- Inputs configured as “Not Used” but are connected to other components.

View Trip and Alarm Log

After selecting “View Trip and Alarm Log”, a list of all recent trips and/or alarms that have been detected and logged in the ProTech-SX are displayed. Each log can contain up to 50 events. Logs can be cleared from the View Events Log screen or from the front panel user interface, with Test Level permissions or higher.

The list contains a description, the time stamp, first-out and/or test-mode indicators. The first-out indicator contains an asterisk (*) for the first detected fault condition(s) after the latch was cleared of all active faults. The test mode indication contains an asterisk (*) if the ProTech was in any of the test modes when the fault condition(s) occurred.
The logs can be saved to an html file using the Export button.

Log Timestamp
The time stamps in the logs are based on the internal clock at the time of the event. Time stamps are not changed when the internal clock time is modified (e.g. time/date is set or a 24 Hr time sync command).

View Overspeed/Acceleration and Trip Cycle Time Log
After selecting “View Overspeed/Acceleration and Trip Cycle Time Log”, two lists are displayed:
- A list of all recent overspeed trips and alarms that have been detected and logged in the ProTech is displayed. The maximum length of this list is 20 lines. The list contains a description, the timestamp, the actual speed when overspeed was detected, the acceleration when overspeed was detected, the maximum speed reached (after trip) and the maximum acceleration.
- A Trip Cycle Time Log which displays the time of the trip and the delay time to receive the trip feedback signal, when used. The cycle time is displayed in milliseconds.
View Event Logs

It is possible to view the contents of the three event logs by selecting “Event Logs”. Each log can contain up to 50 events. Log inputs must be configured and displayed ‘names’ are user-configurable (see “Configuration of Event Logs”).

The displayed log list contains a user-definable description (name), the time stamp of the event, first out indication and test mode indication. The first out indication contains an asterisk (*) for the first detected event(s) after the event latch was cleared of all active events. The test mode indication contains an asterisk (*) if the ProTech was in any of the test modes when the event occurred.

Selecting the **Reset All Logs** button will clear the Trip, Alarm, Overspeed / Acceleration and Trip Cycle Time, Event Log 1, Event Log 2 and Event Log 3 logs. The Reset All Logs button is only visible when logged in with Test Level permissions or higher. If desired, the logs can be cleared from the front panel user interface (see “Logs Menu”).
The logs can be saved to an html file using the Export button.

View Module Faults Log

It is possible to view additional details of Internal Fault Alarm and Trip conditions by selecting “View Module Faults Log”. The list contains a description containing type of fault (trip or alarm), fault originator (identify which CPU faulted: Logic, Comm or Display), fault type, fault source code address, and a time stamp of the fault.

Select the Clear Module Faults Log button to clear this log. This button is only visible with when logged in with Test Level permissions or higher.

The Module Faults Log is only available from the Programming and Configuration Tool (PCT), it is not displayed on the front panel user interface.
The log can be saved to an html file using the Export button.

![Module Faults Log](image)

Figure 10-9. Module Faults Log

Configuration Overview

The Configuration Overview screen shows CRC codes associated with the overall configuration and with individual (sub-component) configurations. The CRC is a value calculated from the configuration data, so that if the data changes, the CRC will change. CRC codes that do not match represent dissimilar configurations and matching CRC codes represent identical configurations.

Comparing CRCs before and after a software change can provide confirmation of where configurations are the same and to facilitate isolation of configuration changes.

The CRC values are also displayed on the front panel user interface (see Configuration Overview).

The log can be saved to an html file using the Export button.

Parameter Block Definitions

- **Configuration CRC**: CRC codes for the entire configuration individually listed below.
- **Speed Manager**: CRC code of the Configure Speed Manager section on the Speed page.
- **Speed Sense**: CRC codes of the following settings in the Configure Speed Inputs 1 & 2 section on the Speed page: Probe Type, Nr of Gear Teeth, Gear Ratio, and Sudden Speed Loss.
- **Overaccel Trip**: CRC codes of the Configure Acceleration section on the Speed page.
- **Overspeed Trip**: CRC codes of the Overspeed Trip setting in the Configure Speed Input section on the Speed page.
- **Start Logic**: CRC codes of the Configure Start Logic section on the Speed page.
- **Analog Output**: CRC codes of Configure Analog Output settings on the Other Outputs page.
- **Programmable Relays**: CRC codes of Configure Discrete Outputs settings on the Other Outputs page.
- **Trip Relay**: CRC codes of Configure Trip Latch setting on the Trip Latch page.
- **Configurable Inputs**: CRC codes of programmable input settings (Programmable Inputs 1-10) on the Inputs page. This CRC does not include the user-definable input names or units.
- **Alarm Latch**: CRC codes of Alarm Latch settings (1-50) on the Alarm Latch page. This CRC does not include the user-definable input names.
- **Trip Latch**: CRC codes of Trip Latch settings (1-25) on the Trip Latch page, excludes the Trip Configuration (energize/de-energize) which is individually stored/displayed (see Trip Relay above). This CRC does not include the user-definable input names.
- **Event Latch 1**: CRC codes of Event Latch 1 settings on the Event Latches page. This CRC codes does not include the user-definable input names.
- **Event Latch 2**: CRC codes of Event Latch 2 settings on the Event Latches page. This CRC does not include the user-definable input names.
- **Event Latch 3**: CRC codes of Event Latch 3 settings on the Event Latches page. This CRC does not include the user-definable input names.
- **Configurable Logic**: CRC codes of the entire configurable logic (Gates, Latches, Delays, Unit Delays, Comparators, Timers, and User Defined Tests). This includes:
 - Gate settings (1-50) on the Logic Gates page.
 - Latch settings (1-10) on the Latches page.
 - Delay settings (1-15) on the Delays page.
 - Unit Delay settings (1-10) on the Unit Delays page.
 - Comparators settings (1-10) on the Comparators page.
 - Timers settings (1-15) on the Timers page.
 - User-defined Test settings (1-3) on the Test Modes page.
- **Trip Cycle Time Monitors**: CRC codes of the settings on the Trip Cycle Timers page.
- **Time Synchronization**: CRC codes of the settings on the Time Synchronization page.
- **Speed Test**: CRC codes of the Temporary Overspeed Trip, Temporary Overspeed Trip Timeout, and Simulated Speed Timeout settings in the Configure Test Modes section of the Test Modes page. Note: see Test Modes CRC for Test Mode Interlock Disabled setting.
- **Modbus**: CRC codes of Configure Modbus settings on the Modbus page, excluding the Slave Address setting which has a separate CRC.
- **Resettable Trip**: CRC codes of Resettable Trip settings on the Reset Logic page.
- **Test Modes**: CRC codes of Test Mode Interlock Disabled setting on the Test Modes page.
- **Modbus Slave Address**: CRC codes of Modbus Slave Address setting on the Modbus page. This setting, when used, will typically be unique for each device. As a result, this setting is included in the overall CRC but is not used in the configuration compare function (not copied or compared).
- **Reset Block**: CRC codes of Configurable Reset Source setting on the Reset Logic page.

![Configuration Overview](image-url)
Edit/View Configuration

After selecting “Edit/View Configuration”, all parameters can be set or changed and loaded to the device while the ProTech-SX is operational. After selecting this button, the following screen is displayed.

A selection can be made for the parameters to be configured on-line. The changes have the same result as off-line configuration - changed parameters are immediately operational. In Off-Line configuration, parameters are only changed in a configuration file.

The Off-Line program mode has the following buttons on the “Home” screen:

- Speed
- Inputs
- Modbus
- Time Synchronization
- Test Modes
- Logic Gates
- Latches
- Delays
- Comparators
- Timers
- Trip Cycle Timers
- Trip Latch
- Alarm Latch
- Reset Logic
- Other Outputs
- Event Latches

These buttons can be used either in On-Line configuration or in Off-Line configuration. Reference the following paragraphs.
Configuration of the ProTech-SX

Changing the configuration settings in the ProTech-SX is permissible only in a trip condition. If the unit is not in trip condition, configuration changes are inhibited. If no trip condition is present, a power-up trip condition can be generated by a power supply cycle.

Changing the configuration settings in the ProTech-SX is possible in two ways:
- Directly through the front panel of the ProTech-SX
- By the Programming and Configuration Tool (PCT)

The changes that can be done via the front panel are limited to the following functions:
- Speed Probe Type
- Number of Gear Teeth
- Gear Ratio
- Overspeed Trip Setpoint
- Sudden Speed Loss Alarm/Trip
- Acceleration Trip Enable/Disable
- Accel trip Enabled Speed Setpoint
- Acceleration Trip Setpoint [rpm/s]
- Speed Fail Setpoint
- Speed Fail Trip Enable/Disable
- Speed Fail Alarm Enable/Disable
- Speed Fail Timeout Trip
- Speed Fail Timeout Time
- Trip Latch Energize/De-energize to Trip
- Analog Output 4 mA and 20 mA Settings
- Test Modes
- Modbus Communication Parameters
- Changing Passwords

All other configurations, including the ones that can be configured by the front panel, can only be implemented by use of the Programming and Configuration Tool (PCT). With the PCT, it is possible to do:
- On-Line configuration
- Off-Line configuration

On-Line Configuration

On-Line Configuration is only possible in Config Level:
- A serial communication link must be established and operational.
- A password for Config Level is required.
- The module must be in a tripped state.

After selecting “Edit/View Configuration”, all parameters can be set or changed and loaded to the device while the ProTech-SX is operational.
For on-line configuration, the following "Home" window buttons are available in the PCT:

- Speed
- Inputs
- Modbus
- Time Sync
- Test Modes
- Logic Gates
- Latches
- Delays
- Comparators
- Timers
- Trip Cycle Timers
- Trip Latch
- Alarm Latch
- Reset Logic
- Analog and Discrete Outputs
- Event Latches

These buttons are only available if a serial communications link is established.

After selecting one of the buttons, a pop-up screen is displayed in which particular parameters for the selected function can be checked and modified, if necessary.

For executing this configuration, see "Configuration Settings" in this chapter.

The right bottom corner of each sub-screen has three buttons and an information bar.

The information bar shows the minimum and maximum values that can be selected on the input field where the cursor is located.

In the example below (in the speed pop-up screen), if the cursor is located at the overspeed setting, the valid range of values is between 100 and 32000.

![Figure 10-12. Applying Changes to the Unit](image)

If a serial communication link is active, and Config level is active, and there are no configuration errors, then:
- After the OK or Apply button is pressed, the new configuration setting will immediately be uploaded to the ProTech-SX.

If the new configuration setting is not immediately uploaded, there are three possibilities:
- Test level was selected for the password.
- A configuration error is detected.
- ProTech-SX module is not in trip condition.

If you click Cancel, the dialog box will close and you will lose your changes. You can reselect the field you are changing and adjust it to a valid value in the range, and the OK & Apply buttons will be available again.
Test level was selected

If test level was selected for the password, the following pop-up window appears:

![Figure 10-13. Load Settings to the Unit](image)

Now communication must be stopped and restarted using Config level. Once logged in at the Config level, configuration settings can be changed.

A configuration error is detected

If a configuration error is detected, the following pop-up window appears:

![Figure 10-14. Load Settings Error](image)
ProTech-SX module is not in a trip condition

If the ProTech-SX module is not in a trip condition, the following pop-up window appears:

![Figure 10-15. Load Settings Error—Module not Tripped](image)

To load a configuration from a PC to a ProTech-SX, the ProTech-SX must be in a trip condition. If the unit is not in trip condition, uploading is inhibited. If no trip condition is present and the unit is configured as “De-energize to Trip”, a power-up trip condition can be established by cycling the power supply.

For configuration of all particular parameters, see “Configuration Settings” in this chapter.

Off-Line Configuration

With the Programming and Configuration Tool (PCT), a settings file can be created, modified, and saved, loaded to, and retrieved from the ProTech-SX.

The configuration can also be exported to an HTML file by using the export selection in the File menu.

Configuration can only be created or modified by the editing of the settings files that are to be transferred to or that were downloaded from the ProTech-SX.

Creating the configuration settings in the ProTech-SX:
1. Create the settings file.
2. Save the settings file on the PC.
3. Later, when on-line, load the settings file from PC to the ProTech-SX.

Modifying the configuration settings in the ProTech-SX:
1. Previously, while on-line, copy the settings file from ProTech-SX to a file on the PC.
3. Save the settings file on the PC.
4. Later, when on-line again, load the settings file to the ProTech-SX.

See **Drop-down Menu “Settings”** for information on how to create and modify configuration files.

Drop-down Menu “Settings”

The drop-down menu settings are used to create and modify the configuration files for the ProTech-SX.

Configuration files can be created, modified, loaded, retrieved, compared, etc.

The following selections are available in the Drop-down Menu “Settings”:

![ProTechSX.wstool - Woodward ToolKit](image)

Figure 10-16. ToolKit Settings Menu

Using the Programming and Configuration Tool (PCT) for preparation of the configuration file

When using the ProTech-SX Programming and Configuration Tool (PCT) for preparation of the configuration file, in isolated level, following selections from the settings drop-down menu can be used:

- New from SID Specification Defaults
- Edit Settings File
- Compare Settings File Differences

Using the Programming and Configuration Tool (PCT) in Test Level

When using the ProTech-SX Programming and Configuration Tool (PCT) in test level, the management of log files is active, and the following selections from the settings pull down menu can be used:

- New from SID Specification Defaults
- Save from Device to File
- Edit Settings File
- Compare Settings File Differences

Using the Programming and Configuration Tool (PCT) in Config Level

When using the ProTech-SX Programming and Configuration Tool (PCT) in config level, the management of log files is active, and the following selections from the settings pull down menu can be used:

- New from SID Specification Defaults
- Save from Device to File
- Edit Settings File
- Load Settings File to Device
- Compare Settings file Differences
New from SID Specification Defaults

With the selection “New from SID Specification Defaults…”, under “Settings”, a new application with default settings can be started.

After clicking this selection, the following sub-window appears with a list of applications:

![Figure 10-17. SID Specification File]

Select the appropriate file compatible with your ProTech software. If other Woodward applications are installed on your PC, a list of choices in addition to ProTech may appear in this list.

![Figure 10-18. Off-Line Program Mode]
With this new window, a new configuration file for the ProTech-SX can be created which means that:

- No logic is pre-programmed
- No Trip, Alarm or Event latches have been configured
- No inputs have been configured
- No test routines have been configured

For executing this configuration, see “Configuration Settings” in this chapter.

After the configuration is complete, the newly created settings file must be saved by using the drop-down menu “File”, followed by “Save As”.

Assign a file location and name, save the file on the PC and close the Settings Editor screen.

The settings files have a *.wset extension.

Once the file is saved, it can be uploaded to the ProTech-SX by using pull down menu “Settings” followed by sub-selection “Load settings file to Device”.

Save from Device to File

In order to modify the configuration in the ProTech-SX, either the settings file of the ProTech-SX must be already available or a settings file must be created by loading the configuration data from the ProTech-SX to a file on PC. With the selection “Save from Device to File”, a configuration file can be loaded from the ProTech-SX to a settings file on a PC. A new file can be created or an existing file can be modified.

To save a setting file from the ProTech-SX to a file, either the test or config level login is required.

After clicking this selection, the following sub-window appears:

![Save from Device to File](image)

Figure 10-19. Save from Device to a File
1. Use the Browse button to select the location and name of the settings file to be created or to be modified. The settings files have a *.wset extension.

2. Saving settings from device to file requires either the test or config level login. There are two valid conditions:
 - Serial communication was already established, and test level or config level was selected.
 - Serial communication was not yet established.

Serial communication was already established, and test level or config level was selected

3. If serial communication was already established, and test level or config level was selected, the transfer of the configuration file from the ProTech-SX starts immediately.

4. The configuration file is ready to be modified by the ProTech-SX Programming and Configuration Tool (PCT). See "Edit Setting File" in this chapter for information on how to modify the configuration file.

Serial communication was not yet established

5. If serial communication was not yet established, and after the filename is defined and the "Next" button is selected, the following pop-up screen appears. Select the appropriate network.

![Image of network selection screen]

Figure 10-20. Save from Device to a File

6. Highlight the communication port where the serial interface cable is connected to and click on the Next button in the pop-up window.
7. If a communications link is established, the following pop-up window appears:

![Figure 10-21. Save from Device to a File—Security](image)

8. Select “Config Level” security level in the drop-down menu and enter the associated password for the selected level. After the password is entered, click on the Next button and the transfer of the configuration file from the ProTech-SX to the PC file starts immediately.

9. The configuration file is ready to be modified by the ProTech-SX Programming and Configuration Tool (PCT). See “Edit Setting File” below for information on how to modify the configuration file.

10. If the communication link cannot be established, the PCT will continue to attempt to establish the communication link until the Disconnect Button is selected.

Edit Settings File

With this selection, an existing configuration file can be modified.

In order to modify the configuration in the ProTech-SX, a file must be created (see “Save from Device to File” section), then modified (instructions in this section), and then re-loaded to the ProTech-SX (see Load Settings File to Device).

After clicking the selection “Edit Settings File” in the pull down menu “Settings”, the following sub-window appears with a list of settings files.
The settings-files have extension *.wset.

If no settings files are available, a settings file must be created (New from SID Specification Defaults), or a settings file must be loaded from the ProTech-SX to a PC (Save from Device to File).

After file selection, the Settings Editor window opens.
With this new window, the configuration file for the ProTech-SX can be modified by using the left-right selection buttons or the drop down menu.

With the selection “Load Settings File to Device”, a configuration file can be loaded from the PC to the ProTech-SX.
To load a settings file to the Device, the Config security level is required. The Test security level is not sufficient.

To load a settings file to the Device, the ProTech-SX must be in a trip condition. If the unit is not in a trip condition, uploading is inhibited. If no trip condition is present, a power-up trip condition can be established by cycling the power supply.

After clicking “Load Settings File to Device”, the following sub-window appears:

1. Use the Browse button to select the location and name of the settings file to be uploaded to the ProTech-SX. The settings-files have a *.wset extension.
2. For uploads, Config level is required. Test level is not sufficient. There are three valid conditions:
 - Serial communication was already established, and Config security level was selected.
 - Serial communication was already established, and Test security level was selected.
 - Serial communication was not yet established.

Serial communication was already established, and Config security level was selected
3. If serial communication was already established and Config level was selected, and there are no configuration errors, the transfer of the configuration file to the ProTech-SX starts immediately. For uploads, Config level is required. The Test level is not sufficient. If no trip condition exists, transfer is inhibited. A trip condition can be established by a power supply cycle.

If a configuration error exists, uploading of the configuration file is inhibited. All configuration errors must be resolved before a successful upload can be accomplished. See “View Configuration Error Log” in this chapter.
Serial communication was already established, and Test security level was selected
4. If serial communication was already established, and Test level was selected, then the transfer of the configuration file to the ProTech-SX cannot be established. For uploads, Config level is required. Test level is not sufficient. The following sub-window appears:

![Figure 10-26. Load Settings File to Device not Permitted](image)

5. Use the disconnect button and reconnect utilizing the password for Config security level and restart the “Load Settings File to Device” procedure.

Serial communication was not yet established
6. If serial communication was not yet established, and after the filename is defined and the “Next” button is selected, the following pop-up screen appears that requests you to select a Network.
7. Highlight the communication port where the serial interface cable is connected to and click on the Next button in the pop-up window.

8. If a communications link is established, the following pop-up window appears:

9. Select “Config Level”, and enter the associated password for the selected security level. After the password is entered, the transfer of the configuration file to the ProTech-SX starts. For uploads, Config level is required. Test level is not sufficient. If no trip condition exists, transfer is inhibited. A trip condition can be established by cycling the power supply.
10. If the communication link cannot be established, the PCT will continue to attempt to establish the communication link until the disconnect button is used.

Compare Settings File Differences

The ProTech-SX Configuration Service Tool can compare two configuration files. By selecting “Compare Settings File Differences”, the files can be compared for differences in either values and/or names.

After clicking this selection, the following sub-window appears:

![Figure 10-29. Compare Settings Files](image)

Select the files to be compared by clicking the appropriate Browse button and select the “OK” button.

The following sub-window is displayed, which shows all differences between the files:

![Figure 10-30. Settings Files Differences](image)
If the configuration contents of a ProTech-SX need to be compared with the configuration contents of a file, a configuration file of the contents of the ProTech-SX must first be created by selecting “Save from Device to File”.

Configuration Settings

The parameter configuration of the ProTech-SX can be modified by either on-line or off-line configuration. Once the communication link is established for on-line configuration, or the **settings editor** is active in off-line configuration, the following parameters can be configured by using the selection buttons in the settings editor:

- Speed
- Inputs
- Modbus
- Time Sync
- Test Modes
- Logic Gates
- Latches
- Delays
- Comparators
- Timers
- Trip Cycle Timers
- Trip Latch
- Alarm Latch
- Reset Logic
- Analog and Discrete Outputs
- Event Latches
Speed

If the “Speed” button is selected, the following screen is displayed:

![Figure 10-31. Programming—Speed](image)

The following parameters can be set:

Configure Speed Manager
- **Speed Redundancy Mode**: Select redundancy mode for either using one or two speed inputs. Valid values: Single Speed or Dual Redundant Speed
- **Maximum Speed Difference**: Maximum difference between speed input 1 and speed input 2 at which speed difference alarm is issued. Valid values: 0-32000 RPM.
- **Redundant Speed Loss (All Inputs)**: Select whether loss of both speed inputs results in Trip or Alarm condition. Valid values: Trip or Alarm.

Configure Speed Inputs 1 & 2
- **Probe Type (Input 1 only)**: Select probe type for speed input 1. Valid values: passive or active.

NOTE: Speed input 2 only supports passive speed probes!
- **Nr of Gear Teeth**: Set the number of teeth on the gear that the speed sensor is mounted. Valid values: 1-320
- **Gear Ratio**: Set the ratio of the sensed-to-actual speed (sensor wheel/shaft speed). Valid values: 0.1-10
- **Overspeed Trip**: Speed setpoint for an overspeed trip. Valid values: 0-32000 rpm. Frequency equivalent must not exceed 32000 Hz (configuration error).
- **Sudden Speed Loss**: Select action to take when a sudden speed loss is detected. Valid values: trip or alarm

Configure Acceleration
- **Enable Acceleration Trip**: Set to Yes to use this function. Valid values: Yes or No.
- **Acceleration Trip Enable Speed**: Speed setpoint at which over-acceleration trip is active. Below this speed the acceleration trip is not active. Valid values: 0-32000 rpm.
- **Acceleration Trip**: Over-acceleration trip setpoint in rpm/second. Valid values: 0-25000 rpm/s.

Configure Start Logic
- **Speed Fail Setpoint**: Speed setpoint below which the speed signal is considered failed. Valid values: 0-25000 rpm
- **Speed Fail Trip**: When Used, this trip is activated when speed is below the Speed Fail Setpoint and the Speed Fail Override discrete input is not closed. Valid values: Not Used or Used
- **Speed Fail Alarm**: When Used, this alarm is activated when speed is below the Speed Fail Setpoint. Valid values: Not Used or Used
- **Speed Fail Timeout Trip**: When Used, this trip is activated if speed is below Speed Fail Setpoint when the Speed Fail Timeout Time expires. Valid values: Not Used or Used
- **Speed Fail Timeout Time**: Max time for speed to exceed the Speed Fail Setpoint after a ‘Start’ command. This setting is used in conjunction with the Speed Fail Timeout Trip. Valid values: 1-28800 seconds
Inputs

The ProTech-SX has 7 configurable inputs that can be configured for either analog or discrete input.

When “Inputs” is selected, the following screen is displayed:

![Figure 10-32. Programming—Inputs](image)

Inputs can be configured using the Programmable Inputs 1-4, 5-7 screens and the options include:

- Not Used
- Discrete Input
- Analog input

Each input can have a name assigned by using the name field. This name is displayed on the front panel on the analog input monitoring screens. The text name for inputs is for reference only and is not used for configuring inputs in ToolKit.
Analog inputs have fields for scaling and assigning engineering units.

![Analog Input Scaling](image1.png)

Analog Inputs have fields for assigning low and high setpoints for trips, alarms, events, or any status, or enable purposes.

![Analog Input Alarm Levels](image2.png)

In order to establish that the low and high setpoints have any effect, these block outputs must be configured as an input in a trip latch, alarm latch, event latch, or any logic gate. All of these outputs themselves are non-latching.

The intended use of these setpoints is that the Lo and Hi setpoints are set ‘inside the range’ of the LoLo and HiHi setpoints (as shown above). The LoLo and HiHi are intended to be ‘inside the range’ of the Range Error triggers, which are fixed settings at 2 mA and 22 mA. If these settings are not needed, then setting these values ‘outside’ the range error settings will eliminate any nuisance annunciations related to this parameter.

Configuration Errors on configurable inputs:

- If a discrete input is configured but not used as an input in any other logic function, the Configuration Error Log will indicate a warning.

- If an input is used as input to a comparator while this input is configured to be a discrete input, the Configuration Error Log will indicate an error and the configuration cannot be uploaded to the ProTech-SX.

- If none of the results of an analog input are used as an input in any other function, the Configuration Error Log will indicate an alarm.

- If any result from the analog input is used, either the analog value or one of the setpoints, then the configuration is regarded correct and no alarm will be displayed in the Configuration Error Log.

- If the analog result from the analog input is used as an input for a Boolean (logical) function like a logic gate, delay, etc, the Configuration Error Log will show an error and the configuration cannot be loaded to the ProTech-SX.
The following fields are available for each configurable input:

Configure Input
- **Input Mode**: Selects the input usage. Valid values: Not Used, Analog Input, or Discrete Input
- **Name**: User-defined name for the input. Valid values: up to 24 characters

Configure Scaling (only visible if Input Mode is Analog)
- **Input 4 mA Value**: Scaling value for the input, in user-defined units, corresponding to 4 mA. Valid values: -999999 to 999999
- **Input 20 mA Value**: Scaling value for the input, in user-defined units, corresponding to 20 mA. Valid values: -999999 to 999999
- **Unit**: User-defined units for the input. Valid values: up to 7 characters

Configure Setpoints (only visible if Input Mode is Analog)
- **Lo**: Lo input level setting, in user-defined units, below which the Analog Input Lo indication is active. Valid values: -999999 to 999999
- **LoLo**: LoLo input level setting, in user-defined units, below which the Analog Input LoLo indication is active. Valid values: -999999 to 999999
- **Hi**: Hi input level setting, in user-defined units, above which the Analog Input Hi indication is active. Valid values: -999999 to 999999
- **HiHi**: HiHi input level setting, in user-defined units, above which the Analog Input HiHi indication is active. Valid values: -999999 to 999999

NOTICE
It is highly recommended that the setpoints be used as an integrity check of the analog input signal. These setpoints can be used to detect signals that are out of range of normal operating limits.

Modbus

The parameters for Modbus communication can be set in the “Modbus Interface” menu. Modbus utilizes a master/slave network protocol. The ProTech-SX is always a “slave”.

![Configure Modbus](image)

Figure 10-35. Modbus Communications
The following fields are available:

Configure Modbus settings
- **Mode:** Select the serial communication mode. Valid values: RS-232 or RS-485
- **Baud Rate:** Sets the serial data rate. Valid values: 19200, 38400, 57600, or 115200 bits/second
- **Communication Parity:** Sets the serial parity. Valid values: No Parity, Even Parity, or Odd Parity
- **Slave Address:** Unique identifier for this module. If all three modules are connected, each will need a unique identifying address. Valid values: 1-247
- **Enable Write Commands:** Set to yes to allow Modbus commands to be written to the ProTech (e.g. Reset, Initiate User-def Test 1) – see Monitor and Control section in Modbus chapter. When set to no, Modbus becomes a monitor-only interface. Valid values: yes or no

Time Synchronization

The internal clock of the ProTech-SX can be synchronized to external devices using a discrete input.

- **Mode:** Select the time sync mode. Valid values: Not Used or 24h Time Sync
- **Synchronization Input Selection:** Selects the discrete input used for synchronizing time. Only appears when Mode is set to 24h Time Sync. Valid values: Discrete Input 1-7
- **Time to Set:** Time of day to be set when commanded by the discrete input. Only appears when Mode is set to 24h Time Sync. Displayed hh:mm:ss, 24 hour format. Valid values: 0-23 for hours, 0-59 for minutes, and 0-59 for seconds.

If 24 hour time-sync is selected, additional input fields appear for the selection of a discrete input for synchronization pulse and the set time.

![Figure 10-36. Time Synchronization](image-url)
Test Modes

The system is equipped with several internal test routines to verify configurable logic and that parameters are working correctly. The test menu of the ProTech-SX keypad contains following tests:

- **Temporary overspeed setpoint**
 This is an Overspeed test with adjusted test speed setpoint executed with the real hardware speed signal from the rotating machine. The speed of the rotating machine must be raised within the allowed test time span in order to test trip action. If the Overspeed setpoint is not exceeded within this time span, the Overspeed test is aborted.

- **Manual simulated speed test**
 This is an Overspeed test with the speed setpoint that is valid for the machine executed with a simulated speed signal from an internal frequency generator that initiates at the Overspeed setpoint minus 100 rpm and must be manually raised within the allowed time span to above the overspeed setpoint in order to test the trip action. If the Overspeed setpoint is not exceeded within this time span, the Overspeed test is aborted.

- **Auto simulated speed test**
 This is an Overspeed test with the speed setpoint that is valid for the machine executed with a simulated speed signal from an internal frequency generator that initiates at the Overspeed setpoint minus 100 rpm and is automatically raised to above the Overspeed setpoint in order to test the trip action. If the Overspeed setpoint is not exceeded within the requested time span, the Overspeed test is aborted.

- **User defined test 1**
- **User defined test 2**
- **User defined test 3**

- **Lamp test**
 The lamp test verifies the front panel LED functionality by cycling through the color combinations. When the test is started, the following sequence is followed.
 1. Tripped, Unit Health, and Alarm LEDs are turned off for 1 second.
 2. Tripped LED is on and red, Unit Health LED is on and red, and Alarm LED is on and yellow for 1 second.
 3. Unit Health LED turns green for one second.
 4. Tripped, Unit Health, and Alarm LEDs are turned off for 1 second.
 5. LEDs return to displaying their active state based on operating conditions.

The test can be repeated as needed. A Cancel option is also provided to cancel the test or to return to the previous test modes screen.
When “Test Modes” is selected, the following screen is displayed:

![Figure 10-37. Programming—Test Modes](image)
The following fields are available:

Configure Test Modes settings
- **Temporary Overspeed Trip**: Overspeed setpoint setting for Overspeed tests with actual turbine speed signal. Valid values: 0-32000 rpm and frequency equivalent must not exceed 32000 Hz (configuration error).
- **Temporary Overspeed Trip Timeout**: Sets the time allowed to raise the actual turbine speed above the temporary Overspeed setpoint in order to test the trip action. If the Overspeed setpoint is not exceeded within this time span, the Overspeed test is aborted. Valid values: 0-1800 seconds
- **Simulated Speed Timeout**: Sets the maximum time allowed during the Manual Simulated Speed Test. If the Overspeed setpoint is not exceeded within this time span, the Overspeed test is aborted. Valid values: 0-1800 seconds

User-defined Test settings
- **Is Enabled**: Set to Yes to use the function. Valid values: Yes or No
- **Set input**: Selection to start the user-defined test. Valid values: (see selection list below)
- **Reset input**: Selection to stop the user-defined test. Valid values: (see selection list below)
- **Timeout**: Max test time setting. The test will abort after the timeout expires. Valid values: 0-1800 seconds

User-defined Test Input selections
- Not Connected
- Reset Function
- Discrete Input 1-10
- Analog Comparator 1-10
- Logic Gate 1-50
- Latch 1-10
- Delay 1-15
- Timer 1-15 HiHi
- Timer 1-15 Hi
- Unit Delay 1-10

Logic Gates

There are 50 Logic gates available that can be used to create customized logic. These gates can each be custom defined by a selection from following functions:
- AND
- NAND
- OR
- NOR
- XOR
- XNOR
- NOT
When “Logic Gates” is selected in the settings editor, the following screen is displayed:

[Diagram of Logic Gate Monitor Screen]

[Diagram of Programming—Logic Gates]
Specific gates can be selected by the buttons near the top of the page.

The function of the gates can be selected by the Type selection input field.

- AND, OR, NAND, and NOR gates can have up to five inputs.
- XOR, and XNOR gates have two inputs.
- NOT gates have one input.

In each input selection field, the origin of the signal can be entered. These inputs can be any function result from another gate, or from an analog input alarm setpoint, or a timer, etc.

For this purpose, all functions like logic gates, timers, inputs, etc are numbered which allow easy referencing of logic gate inputs to outputs from other functions. An example of how inputs are numbered is shown below:

A complete listing of the input selections is provided below (see Logic Gate Input selections table). For additional details on each selection refer to section on Configurable Logic Selection Definitions.

If the result of a logic gate is not used as an input in any other function, the Configuration Error Log will indicate a warning.

If Inputs configured as analog input are connected to the logic gate, the Configuration Error Log will indicate an error and uploading of the configuration file will not be possible.
Logic Gate Input Selections

<table>
<thead>
<tr>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Connected</td>
<td>Alarm</td>
</tr>
<tr>
<td>Always FALSE</td>
<td>Event Latch 1-3</td>
</tr>
<tr>
<td>Always TRUE</td>
<td>Analog Input 1-7 HiHi</td>
</tr>
<tr>
<td>Start Function</td>
<td>Analog Input 1-7 Hi</td>
</tr>
<tr>
<td>Reset Function</td>
<td>Analog Input 1-7 Lo</td>
</tr>
<tr>
<td>Speed Fail Override</td>
<td>Analog Input 1-7 LoLo</td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>Analog In 1-7 Range Err</td>
</tr>
<tr>
<td>Overacceleration Trip</td>
<td>Discrete Input 1-7</td>
</tr>
<tr>
<td>Speed Fail Trip</td>
<td>Analog Comparator 1-10</td>
</tr>
<tr>
<td>Speed Fail Timeout</td>
<td>Logic Gate 1-50</td>
</tr>
<tr>
<td>Speed Lost Alarm</td>
<td>Latch 1-10</td>
</tr>
<tr>
<td>Speed Lost Trip</td>
<td>Delay 1-15</td>
</tr>
<tr>
<td>Speed 2 Lost Alarm</td>
<td>Timer 1-15 HiHi</td>
</tr>
<tr>
<td>Speed 2 Lost Trip</td>
<td>Timer 1-15 Hi</td>
</tr>
<tr>
<td>Speed Difference Alarm</td>
<td>Unit Delay 1-10</td>
</tr>
<tr>
<td>Spd 1 Open Wire Alarm</td>
<td>Trip Time Mon 1 Alarm</td>
</tr>
<tr>
<td>Spd 1 Open Wire Trip</td>
<td>Trip Time Mon 2 Alarm</td>
</tr>
<tr>
<td>Spd 2 Open Wire Alarm</td>
<td>Power Up Trip</td>
</tr>
<tr>
<td>Red. Speed Loss Alarm</td>
<td>Internal Fault Trip</td>
</tr>
<tr>
<td>Red. Speed Loss Trip</td>
<td>Internal Fault Alarm</td>
</tr>
<tr>
<td>Tmp Ovrspd Selpoint On</td>
<td>Configuration Trip</td>
</tr>
<tr>
<td>Man Simulated Speed Active</td>
<td>Resettable Trip Input</td>
</tr>
<tr>
<td>Auto Test Speed Active</td>
<td>Power Supply 1 Fault</td>
</tr>
<tr>
<td>User Defined Test 1-3</td>
<td>Power Supply 2 Fault</td>
</tr>
<tr>
<td>Speed Fail Alarm</td>
<td>Parameter Error</td>
</tr>
<tr>
<td>Trip</td>
<td></td>
</tr>
</tbody>
</table>

Latches

There are ten latches (set/reset flip-flops) available that can be used to create an output available for trips, alarms, or any logical function. The latch is reset dominant, meaning the output is false if the Reset input is true regardless of the Set input.

![Latch Monitor Screen (front panel)](image_url)
When “Latches” is selected in the settings editor or config menu, the following screen is displayed:

Figure 10-42. Programming—Latches

Latch settings

- **Set Input.** Selection for the reset-dominant latch block set input. The Set and Reset inputs for each latch can be any function result from another gate or from an analog input alarm setpoint, a timer, etc. Valid values: *(see Logic Gate Input selection list)*

- **Reset Input.** Selection for the reset-dominant latch block Reset input. Valid values: *(see Logic Gate Input selection list)*

If the result of a latch is not used as an input in any other function, the Configuration Error Log will indicate a warning. If inputs configured as analog input are connected to the latch, the Configuration Error Log will indicate an error and uploading of the configuration file will not be possible.
Delays

There are 15 Delay functions (timers) available that can be used to create an output available for trips, alarms, or any logical function. Each delay function can have a pickup time and a drop-off time (delay in switching from False to True, delay in switching from True to False).

![Delay Monitor Screen (front panel)](image1)

When “Delays” is selected in the settings editor or the Config menu, the following screen is displayed:

![Programming—Delay Blocks](image2)
The delay requires that the input be true for a configurable True Delay Time before the output changes state to true, and that the input be false for a configurable False Delay Time before the output changes state to false.

The input field for each delay can be any function result from another gate or from an analog input alarm setpoint, or a timer, etc. For this purpose, all functions like logic gates, timers, inputs, etc are numbered. Referencing logic gate inputs to outputs from other functions is done by this numbering.

The False delay field defines the drop-off time (delay switching from True to false). The True delay field defines the pick-up time (delay switching from False to True).

Delay settings
- **Input**: Selection for the block input. Valid values: *(see Logic Gate Input selection list)*
- **False Delay**: Time delay that the input must remain false before the output goes false. The minimum detectable resolution is 4 msec. Valid values: 0-3600 seconds
- **True Delay**: Time delay that the input must remain true before the output goes true. The minimum detectable resolution is 4 msec. Valid values: 0-3600 seconds

If the result of a delay is not used as an input in any other function, the Configuration Check Error Log will show a warning.

If inputs configured as ‘analog input’ are connected to the delay function, the Configuration Check Error Log will show an error and uploading of the configuration file will not be possible.

Unit Delays

Ten unit delay blocks are available to break loops detected in the configurable logic by forcing a specific execution order. The output of the unit delay equals the input of the block the last time it was executed.

If any block input is connected to its output or if a loop is detected, the Configuration Check Error Log will show an error and uploading of the configuration file will not be possible. Properly inserting a unit delay block in the loop will enforce program execution and satisfy the loop check algorithm.

![Figure 10-45. Unit Delay Monitor Screen (front panel)](image)

When “Unit Delays” is selected, the following screen is displayed:
Unit Delay Settings

- **Input.** Selection for the block input. The input field for each unit delay can be any function result from another gate or from an analog input alarm setpoint, or a timer, etc. Valid values: *(see Logic Gate Input selection list)*

Comparators

There are ten comparators available that can be used to create an output available for trips, alarms, or any logical function.

![Figure 10-46. Comparator Monitor Screen (front panel)](image)

When “Comparators” is selected, the following screen is displayed:

![Figure 10-47. Programming—Comparator Blocks](image)
The block input is compared to fixed on and off values. The values entered have the same scaling as the connected analog input (speed is in rpm and acceleration is in rpm/s).

The difference between ON-level and OFF-level can be used to create hysteresis.

If ON-level is greater than the OFF-level, the output becomes true when the input is higher than the ON-level and goes false when the input becomes less than OFF-level.

If ON-level is less than the OFF-level, the output becomes true when the input is less than the ON-level and goes false when the input becomes higher than OFF-level.

If On-level equals OFF-level, there is no hysteresis and the output becomes true when the input is higher than the ON-level and goes false when the input becomes less than ON-level.

Comparator Settings

- **Input.** Selection for the block input. Valid values: Speed, Acceleration, or Analog Input 1-10.
- **Off Level.** Comparator OFF value, in engineering units. Valid values: -999999 to 999999
- **On Level.** Comparator ON value, in engineering units. Valid values: -999999 to 999999

If the result of a comparator is not used as an input in any other function, the Configuration Error Log will indicate a warning.

If inputs configured as 'discrete input' are connected to the comparator, the Configuration Error Log will indicate an error and uploading will be inhibited.

Timers

Fifteen timers are available. Each timer has a Start input, a Reset input, an Elapsed Time output, a Hi Setpoint Reached output, and a HiHi Setpoint Reached output. The timer counts up while the Start input is true.

The Elapsed Time Output is reset to zero and the Boolean outputs (Hi and HiHi) set false when the Reset input is true. The Start input is ignored whenever the Reset input is true. For example, if the Reset input is set to true, and the Start input is set to true, the timer remains reset. If the Reset input changes to false with the Start input still true, the timer will start.

The Output value is displayed in milliseconds and can be viewed on the front panel or over Modbus as well as the status of the Hi and HiHi outputs.
When “Timers” is selected in the settings editor or config menu, the following screen is displayed:

The Start input field and the Reset input field for each timer can be any function result from another gate or from an analog input alarm setpoint, or a timer, etc.

The Hi and HiHi Setpoint setpoints are user-configurable. The Hi Setpoint field defines the time delay until the Hi output becomes true. The HiHi Setpoint field defines the time delay until the HiHi output becomes true.

Timer settings

- **Start Input.** Selection for the timer Start input. Valid values: (see Logic Gate Input selection list)
- **Reset Input.** Selection for the timer Reset input. Valid values: (see Logic Gate Input selection list)
- **Hi Setpoint.** Accumulated time setting for the timer block Hi output. The minimum detectable resolution is 4 msec. Valid values: 0-3600 seconds
- **HiHi Setpoint.** Accumulated time setting for the timer block HiHi output. The minimum detectable resolution is 4 msec. Valid values: 0-3600 seconds
If the result of a timer is not used as an input in any other function, the Configuration Error Log will indicate a warning.

To use a timer, both Start and Reset input must be configured to a value other than 'Not Connected' otherwise the Configuration Error Log will indicate an error and uploading of the configuration file will not be possible.

Trip Cycle Timers

A trip cycle timer is a function that measures the time from a trip event until the trip is confirmed by an input (for instance trip and throttle valve limit switch), or by any internally created logic function. An Alarm is indicated if the time is expired before the feedback confirmation is received. There are two trip cycle timers available.

The trip cycle time is measured in milliseconds and shown in Monitor mode on the ProTech-SX display.

When “Trip Cycle Timers” is selected in the settings editor or in the config menu, the following screen is displayed:

![Figure 10-50. Programming—Trip Cycle Timers](image)

The Trip Indicator input field has to be connected to the signal that is used for the trip feedback confirmation (for example, a trip valve limit switch). This trip Indicator input field for each timer can be any function result from a discrete input, another gate, or from an analog input alarm setpoint, etc.

Trip Cycle Timer settings

- **Trip Indicator Input.** Selection for the indicator feedback.

 Valid values:

 Trip Cycle Time Monitor Input selections

 Not Connected

 Event Latch 1-3

 Analog Input 1-7 HiHi

 Analog Input 1-7 Hi

 Analog Input 1-7 Lo

 Analog Input 1-7 LoLo

 Discrete Input 1-7

 Analog Comparator 1-10
Logic Gate 1-50
Latch 1-10
Delay 1-15
Timer 1-15 HiHi
Timer 1-15 Hi
Unit Delay 1-10
Resettable Trip Input

- **Maximum Cycle Time.** The Maximum Cycle Time defines the time allowed between a trip occurrence and the feedback confirmation. This value is expressed in milliseconds. Valid values: 1-60000 ms

The output of the Trip Cycle Monitor is automatically connected to the Alarm Latch, user connection is not required.

Trip Latch

The output of the Trip Latch goes true if any of its inputs are true. Once the output of the trip latch is true, it remains true until the trip reset function occurs and all inputs are false. The output of the trip latch drives the trip voter relays.

The trip voter relays can be configured to energize for trip or de-energize for trip, which can be selected by entering the particular selection in the trip configuration input field.

The inputs of this trip latch are 11 fixed trip causes and can be expanded with up to 25 programmable trip causes. The fixed trip causes are:

- **Power-up Trip:** At power up, the unit always starts in trip condition which can be reset. This trip cause is always enabled and cannot be inhibited.
- **Internal Module Fault:** This trip cause is active if any fault is detected by the internal diagnostic logic.
- **Overspeed Trip:** This trip cause is always enabled and cannot be inhibited.
- **Speed Fail Trip:** This trip cause can be enabled or disabled in the configuration screen of the speed inputs.
- **Speed Lost Trip:** This trip cause can be disabled (set to Alarm) in the configuration screen of the speed inputs.
- **Speed 2 Lost Trip:** This trip cause can be disabled (set to Alarm) in the configuration screen of the speed inputs.
- **Speed Probe 1 Open Wire Trip:** Open wire detection is only possible if MPU speed probes are used.
- **Redundant Speed Loss Trip:** Both speed inputs are lost in dual redundant speed mode.
- **Speed Fail Timeout Trip:** This trip cause can be enabled or disabled in the configuration screen of the speed inputs.
- **Over-acceleration Trip:** This trip cause can be enabled or disabled in the configuration screen of the speed inputs.
- **Configuration Trip:** Indicated during a configuration save.
- **Parameter Error Trip:** This trip cause is active if settings are not correctly read out of EEPROM.
- **Resettable Trip Input:** This trip cause can be enabled or disabled in the configuration screen of the Reset inputs.

In addition, 25 trip causes can be programmed. These trip causes can be either from discrete inputs, comparators, latches, logic gates, etc. The user can assign a description to each user-configurable input by just replacing the default text, where the description can have up to 24 alphanumeric characters maximum.
When the Trip Latch button is selected, the following screen is displayed:

![Figure 10-51. Programming—Trip Latches](image)

In the example above, programmable trip latch input #1 is connected to Discrete Input 1. The name is Vibration System Trip.

Alarm Latch

The output of the Alarm Latch goes true if any of its inputs are true. Once the output of the Alarm latch is true, it remains true until the trip reset function occurs and all inputs are false. The output of the alarm latch is connected by default to programmable relay 1.

The alarm latch provides up to 50 user-configurable inputs.

These inputs can be from discrete inputs, comparators, latches, Logic gates, etc, by using the selector menu (black triangle)

The user can assign a description to each user-configurable input by just replacing the default text, where the description can have up to 24 alphanumeric characters maximum.

This description will show on the ProTech-SX screen when the corresponding alarm cause is active.
When Alarm Latch is selected, the following screen is displayed:

![Figure 10-52. Programming—Alarm Latches](image)

In the example above, programmable Alarm Latch Input #1 is connected to Analog Comparator 1. The name is: Speed > 3700 RPM.

Reset Logic

This screen facilitates configuration of the configurable reset command and a resettable trip input.

Configurable Reset Command

The "Reset Logic" screen allows selecting additional reset inputs for resetting the alarm and trip latches.

By using this selection, the reset can be established not only by the Reset button on the ProTech-SX keypad, but also by an external function or by a function created in logic.

To do so, the extra reset source can be entered in the input field for the configurable reset source, or by setting Mode = Used and assigning one of the discrete inputs to input field “Reset Input Selection”.
Resettable Trip Input

The "Reset Logic" screen allows selecting an input to the trip latch that has been pre-configured to provide a resettable trip feature. With this feature, the ProTech trip output can be reset while this trip input is still commanding a trip. Example use of this function is ProTech-SX product connection into a turbine trip string as an input and output, as a latch-up prevention.

When set to 'Used', the Resettable Trip Function is automatically connected into the Trip Latch. While this trip input is active (commanding a trip; open discrete input), the ProTech trip output can be reset.

If the discrete input closes and then re-opens after the reset, a trip shall be re-activated. If the discrete input closes and then re-opens prior to a reset, the trip shall remain active (and not clear and re-appear).

Figure 10-53. Programming—Reset Logic

Configurable Reset Source

- **Input**: Selection for the configurable reset input. Valid values: (see Logic Gate Input selection table)

Resettable Trip

- **Resettable Trip Use (reset clears trip)**: Set to Used to enable this function. Valid values: Not Used or Used
- **Input Selection**: Selection for the configurable reset input. Valid values: Discrete Input 1-7
The output of the Resettable Trip function is automatically connected to the Trip Latch, user connection is not required. The output of the Resettable Trip function is available for connection to other blocks in the configurable logic.

Other Outputs

Each unit has three configurable relay outputs and one 4–20 mA analog output.

The analog output is a 4–20 mA signal proportional with measured speed of which scaling can be adjusted using the 4 mA value and 20 mA value input fields.

The relay outputs can be connected to any discrete signal inside the ProTech-SX. Including the discrete inputs.

When “Other Outputs” is selected, the following screen is displayed:

![Figure 10-54. Programming—Other Outputs](image)

Configure Discrete Outputs

- **Relay Input**: Selection for the configurable reset input. Valid values: (see Logic Gate Input selection table)
- **Polarity**: Output inversion option. Valid values: Non Inverting or Inverting

Configure Analog Output

- **Speed @ 4 mA**: The speed value at min (4 mA) for scaling the analog output. Valid values: 0-32000 RPM
- **Speed @ 20 mA**: The speed value at max (20 mA) for scaling the analog output. Valid values: 0-32000 RPM
Event Latches

Three event latches are available. Each event latch has up to 25 user-configurable inputs. The output of the event latch goes true if any input is true. These inputs can be either from discrete inputs, comparators, latches, logic gates, etc.

The user can assign a description to each user-configurable input, by just replacing the default text, where the description can have up to 24 alphanumeric characters maximum. This description will show on the ProTech-SX screen when the corresponding event has occurred.

Once the output of the event latch is true, it remains true until its Reset input becomes true and all inputs are false.

The typical connection for the Reset input is the 'Reset Function' however other connection options can be selected by entering any signal in the Reset input field.

Each input has an associated First-Out Boolean output that is true if that input became true when the output of the trip latch was false.

Once true, the First-Out Boolean values remains true until the event latch output becomes false.

The First-Out Boolean values are available on Modbus and the front panel display. They are not available as inputs to the configurable logic blocks or the programmable relays.

When "Event Latches" is selected, the following screen is displayed:
Figure 10-55. Programming—Event Latches

In the example above, configurable event latch input #2 is connected to speed lost alarm, and input #3 is connected to discrete input 2. And the description is Boiler trip.
Configurable Logic Selection Definitions

The following table provides a definition of the input selections available in the configurable logic.

<table>
<thead>
<tr>
<th>Selection Identifier</th>
<th>Description of selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Connected</td>
<td>This is the setting to be selected for an input that is not used. NOTE: If a block is not to be used, its inputs should be “Not Connected”, otherwise a configuration warning will be generated.</td>
</tr>
<tr>
<td>Always FALSE</td>
<td>Sets the value of the input to a fixed setting of FALSE.</td>
</tr>
<tr>
<td>Always TRUE</td>
<td>Sets the value of the input to a fixed setting of TRUE.</td>
</tr>
<tr>
<td>Start Function</td>
<td>Start function output. This is a short pulse that goes true on the rising edge of a start command (front panel or discrete input) and is automatically set back to false 4 ms later.</td>
</tr>
<tr>
<td>Reset Function</td>
<td>Reset function output. This is a short pulse that goes true on the rising edge of a reset command (front panel or discrete input) and is automatically set back to false 4 ms later.</td>
</tr>
<tr>
<td>Speed Fail Override</td>
<td>Speed Fail Override discrete input status indication. True when the input is high and false when low.</td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>Overspeed indication. True when speed is above the Overspeed setpoint and false otherwise.</td>
</tr>
<tr>
<td>Overacceleration Trip</td>
<td>Over acceleration indication. True when acceleration is above the Acceleration Trip setpoint and speed is above the Accel Trip Enabled speed.</td>
</tr>
<tr>
<td>Speed Fail Trip</td>
<td>Speed Fail Trip indication. True when the speed lost trip condition is detected. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Speed Fail Timeout</td>
<td>Speed Fail Timeout indication. This is a short pulse that goes true when the condition is detected and is automatically set back to false 4 ms later.</td>
</tr>
<tr>
<td>Speed Lost Alarm</td>
<td>Speed Lost Alarm indication. True when the Speed Lost trip condition is detected on speed input 1. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Speed Lost Trip</td>
<td>Speed Lost Trip indication. True if a speed lost trip is detected on speed input 1. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Speed 2 Lost Alarm</td>
<td>Speed Lost Alarm indication. True when the Speed Lost trip condition is detected on speed input 2. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Speed 2 Lost Trip</td>
<td>Speed Lost Trip indication. True if a speed lost trip is detected on speed input 2. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Speed Difference Alarm</td>
<td>Speed Difference Alarm indication. True if the difference between speed input 1 and speed input 2 is greater than the configured threshold. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Spd 1 Open Wire Alarm</td>
<td>Speed Probe Open Wire Alarm indication for speed input 1. True while an open wire is detected in dual redundant speed mode.</td>
</tr>
<tr>
<td>Spd 1 Open Wire Trip</td>
<td>Speed Probe Open Wire Trip indication for speed input 1. True while an open wire is detected in single redundant speed mode.</td>
</tr>
<tr>
<td>Spd 2 Open Wire Alarm</td>
<td>Speed Probe Open Wire Alarm indication for speed input 2. True while an open wire is detected in dual redundant speed mode.</td>
</tr>
<tr>
<td>Red. Speed Loss Alarm</td>
<td>Redundant Speed Loss Alarm indication. True if both speed inputs are lost. Remains true until cleared by reset.</td>
</tr>
<tr>
<td>Red. Speed Loss Trip</td>
<td>Redundant Speed Loss Trip indication. True if both speed inputs are lost. Remains true until cleared by reset.</td>
</tr>
<tr>
<td>Selection Identifier</td>
<td>Description of selection</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Tmp Ovrspd Setpoint On</td>
<td>Tmp Ovrspd Setpoint On indication. True while the test is in the Active state.</td>
</tr>
<tr>
<td>Man Simulated Speed Active</td>
<td>Man Simulated Speed Active indication. True while the test is in the Active state.</td>
</tr>
<tr>
<td>Auto Test Speed Active</td>
<td>Auto Test Speed Active indication. True while the test is in the Active state.</td>
</tr>
<tr>
<td>User Defined Test 1-3</td>
<td>User Defined Test 1, 2, or 3 active indication. True while the specified User Defined Test is in the Active state.</td>
</tr>
<tr>
<td>Speed Fail Alarm</td>
<td>Speed Fail Alarm indication. True if a speed fail alarm is detected.</td>
</tr>
<tr>
<td>Trip</td>
<td>Trip Latch output. True if any trip is detected. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Alarm Latch output. True if any alarm is detected. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Event Latch 1-3</td>
<td>Event Latch 1, 2, or 3 output. True if any events in the specific Event Latch is detected and latched. Remains true until cleared by a reset.</td>
</tr>
<tr>
<td>Analog Input 1-7 HiHi</td>
<td>Analog Input HiHi output. This output is true when the input current is above the HiHi setting and false when at or below.</td>
</tr>
<tr>
<td>Analog Input 1-7 Hi</td>
<td>Analog Input Hi output. This output is true when the input current is above the Hi setting and false when at or below.</td>
</tr>
<tr>
<td>Analog Input 1-7 Lo</td>
<td>Analog Input Lo output. This output is true when the input current is below the Lo setting and false when at or above.</td>
</tr>
<tr>
<td>Analog Input 1-7 LoLo</td>
<td>Analog Input LoLo output. This output is true when the input current is below the LoLo setting and false when at or above.</td>
</tr>
<tr>
<td>Analog In 1-7 Range Err</td>
<td>Analog Input Range Error output. This output is true when the input current is above 22 mA or below 2 mA.</td>
</tr>
<tr>
<td>Discrete Input 1-7</td>
<td>Discrete input status indication. True when the input is high and false when low.</td>
</tr>
<tr>
<td>Analog Comparator 1-10</td>
<td>Comparator block output.</td>
</tr>
<tr>
<td>Logic Gate 1-50</td>
<td>Logic Gate block output.</td>
</tr>
<tr>
<td>Latch 1-10</td>
<td>Latch block output.</td>
</tr>
<tr>
<td>Delay 1-15</td>
<td>Delay block output.</td>
</tr>
<tr>
<td>Timer 1-15 HiHi</td>
<td>Timer block HiHi output.</td>
</tr>
<tr>
<td>Timer 1-15 Hi</td>
<td>Timer block Hi output.</td>
</tr>
<tr>
<td>Unit Delay 1-10</td>
<td>Unit Delay block output.</td>
</tr>
<tr>
<td>Trip Time Mon 1 Alarm</td>
<td>Trip Cycle Time Monitor 1 output. True when the trip cycle time alarm condition is detected. Remains true until a reset is commanded.</td>
</tr>
<tr>
<td>Trip Time Mon 2 Alarm</td>
<td>Trip Cycle Time Monitor 2 output. True when the trip cycle time alarm condition is detected. Remains true until a reset is initiated.</td>
</tr>
<tr>
<td>Power Up Trip</td>
<td>Power up trip indication. This is a short pulse that transitions to true on power-up only if configured as de-energize to trip and is automatically set back to false 4 ms later.</td>
</tr>
<tr>
<td>Internal Fault Trip</td>
<td>Indicates an internal fault trip condition was detected. When this is true, the product remains in a tripped state. A power cycle is required to clear this error.</td>
</tr>
<tr>
<td>Selection Identifier</td>
<td>Description of selection</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Internal Fault Alarm</td>
<td>Indicates an internal fault alarm condition was detected. When this is true, the ProTech-SX remains in an alarm state. A reset or power cycle is required to clear this error.</td>
</tr>
<tr>
<td>Configuration Trip</td>
<td>Indicates the module is tripped as a result of loading new configuration settings. This indication is true while loading and goes false when the configuration load is completed (either successfully or failed/error).</td>
</tr>
<tr>
<td>Resettable Trip Input</td>
<td>Output from the Resettable Trip function to the Trip Latch. True means trip.</td>
</tr>
<tr>
<td>Power Supply 1 Fault</td>
<td>Output from the power supply fault detection function to the Alarm Latch. True means alarm.</td>
</tr>
<tr>
<td>Power Supply 2 Fault</td>
<td>Output from the power supply fault detection function to the Alarm Latch. True means alarm.</td>
</tr>
<tr>
<td>Parameter Error</td>
<td>Indicates a parameter error was detected, meaning there was a problem reading the settings out of the EEPROM. When this is true, the ProTech-SX remains in a tripped state. A power cycle is required to clear this error.</td>
</tr>
</tbody>
</table>

Configuration of Custom Logic

Custom logic can be built by combining logical functions like comparators, latches, gates, etc. The results of this logic can be used to cause a trip or alarm by using these results as inputs to the trip-latches, etc., or can be connected to one of the relay outputs.

Connecting outputs (results) from one function to inputs of other functions always has to be defined by entering in the input fields of functions a reference to another function.

Before you start entering custom logic, Woodward recommends you make a logic diagram and keep this diagram in the documentation files. Woodward also recommends keeping the diagrams up to date after a modification in custom logic. Reconstruction of the logic interconnections from the configuration files after-the-fact is possible, but time-consuming.

IMPORTANT The customer is responsible for fully testing their logic configuration.

IMPORTANT The custom logic uses a non-latching 'one-shot' on the Start and Reset functions. If a condition needs to remain latched that is initiated by either Start or Reset function, a Latch must be used.
ProTech-SX Configuration Checks

When a settings file is loaded to the device, the values are checked in the control. Configuration Warnings are provided for detected configuration issues that are questionable and should be verified. A Configuration Error indicates a problem in the settings file that needs correcting. If a configuration error is detected during a settings file load, the file load is aborted and the values are discarded. Detection of configuration warnings will not preclude a settings file load operation.

Configuration Check Message Summary

1. Error – <block identifier> has unconfigured inputs.
2. Error – <block identifier> has improper inputs configured.
3. Error – <block identifier> is used but has no inputs configured.
4. Error – <block identifier> has outputs connected but no inputs configured.
5. Error – <block identifier> is not used but has outputs connected.
6. Error – <block identifier> is configured as not used but has outputs connected.
7. Error – <block identifier> is configured as analog but has discrete outputs connected.
8. Error – <block identifier> is configured as discrete but has analog outputs connected.
9. Error – <block identifier> is in a circular configuration loop.
10. Warning – <block identifier> is used but has no outputs connected.
11. Warning – <block identifier> is configured but has no outputs connected.
12. Warning – <block identifier> is configured as analog but has no analog outputs connected.
13. Warning – <block identifier> is configured as discrete but has no discrete outputs connected.
14. Error – <block identifier> is set to an invalid or out-of-range value.
15. Error - Proposed configuration contains data that is invalid (out-of-range).

Configuration Check Definitions

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error – <block identifier> has unconfigured inputs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified block has inputs that are not configured. The following configurations will trigger this error:</td>
</tr>
<tr>
<td>Example 1:</td>
<td>Error – Logic Gate 1 has unconfigured inputs.</td>
</tr>
<tr>
<td></td>
<td>Logic Gate 1 input is configured as an AND block but has only 1 input configured (2+ are required).</td>
</tr>
<tr>
<td>Example 2:</td>
<td>Error – Latch 2 has unconfigured inputs.</td>
</tr>
<tr>
<td></td>
<td>One of the inputs (Set or Reset) on the logic Latch 2 block is not configured.</td>
</tr>
</tbody>
</table>
2

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error - <code><block identifier></code> has improper inputs configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified block has inputs that are improperly configured. The following configurations will trigger this error:</td>
</tr>
<tr>
<td>Examples:</td>
<td>1) XOR or XNOR gate with inputs 3, 4 or 5 connected.</td>
</tr>
<tr>
<td></td>
<td>2) NOT gate with inputs 2, 3, 4 or 5 connected.</td>
</tr>
</tbody>
</table>

3

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error - <code><block identifier></code> is used but has no inputs configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified function is configured as used but the block inputs are not configured. This error applies to the resettable trip function.</td>
</tr>
<tr>
<td>Example:</td>
<td>Error – Resettable Trip is used but has no inputs configured. The Resettable Trip function is configured as 'Used' but the function's input is not configured.</td>
</tr>
</tbody>
</table>

4

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error - <code><block identifier></code> has outputs connected but no inputs configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified block has inputs that are not configured but has connected outputs. This error applies to the Trip Cycle time monitor, Event Latches, and all configurable logic blocks.</td>
</tr>
<tr>
<td>Example 1:</td>
<td>Error - Gate 1 has outputs connected but no inputs configured. Gate 1 is connected to Gate 2 but Gate 1’s inputs are set to Not Used.</td>
</tr>
<tr>
<td>Example 2:</td>
<td>Error - Latch 3 has outputs connected but no inputs configured. Latch 3 is connected to another block but Latch 3’s Reset input is set to Not Used.</td>
</tr>
<tr>
<td>Example 3:</td>
<td>Error - Event Latch 2 has outputs connected but no inputs configured. Event Latch 2 is connected to another block but Event Latch 2’s Reset input is set to Not Used or no event inputs are configured.</td>
</tr>
</tbody>
</table>

5

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error -- <code><block identifier></code> is not used but has outputs connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified function is configured as 'Not Used' but has connected outputs. This error applies to the User Defined Test, Over-acceleration, and Resettable trip.</td>
</tr>
<tr>
<td>Example 1:</td>
<td>Error – Over-Accel Trip is not used but has outputs connected. The over-acceleration trip is connected to another block but the function is not configured for use.</td>
</tr>
<tr>
<td>Example 2:</td>
<td>Error – Resettable Trip is not used but has outputs connected. Resettable Trip is connected to other logic but Resettable Trip is configured as 'Not Used'.</td>
</tr>
</tbody>
</table>

Note: The exception to this check is User-Defined Test which is allowed to be used and unconfigured since it can be started and stopped from Modbus or the Front Panel.
6
Text: Error – *<block identifier>* is configured as not used but has outputs connected.
Condition: The identified analog/discrete input is configured as 'Not Used' but has connected outputs.
Example: *Error – Programmable Input 7 is not used but has outputs connected.*
Delay 1 input is configured as 'Input 7 discrete' but Programmable Input 7 is configured as 'Not Used'.

7
Text: Error – *<block identifier>* is configured as analog but has discrete outputs connected
Condition: The identified analog/discrete input is configured as an analog input but has an output connected to the discrete input function.
Example: *Error – Input 3 is analog but has discrete outputs connected.*
Delay 1 input is configured as 'Input 3 discrete' but Input 3 is configured as an analog input.

8
Text: Error – *<block identifier>* is configured as discrete but has analog outputs connected.
Condition: The identified analog/discrete input is configured as a discrete input but has an output connected to an analog input function.
Example: *Error – Input 4 is discrete but has analog outputs connected.*
Trip Latch input 1 is configured as 'Input 4 Hi Hi' but Input 4 is configured as a discrete input.

9
Text: Error – *<block identifier>* is in a circular configuration loop
Condition: A loop has been detected in the configuration. The identified block is one of the blocks in this loop. Only one loop at a time is and each block in the detected loop is identified. A Unit Delay (Z⁻¹ equivalent) must be inserted in the loop to provide a break in the loop.
Example: *Error – Logic Gate 14 is in a circular configuration loop.*
Error – Logic Gate 15 is in a circular configuration loop.
Error – Logic Gate 16 is in a circular configuration loop.
The configuration of the identified blocks creates a loop that needs to be resolved. A Unit Delay block is required to break this loop.
Example 2: *Error – Logic Gate 34 is in a circular configuration loop.*
Logic Gate 34 output is directly connected to its input, creating a loop. A Unit Delay block is required between the output and the input to break this loop.

10
Text: Warning – *<block identifier>* is used but has no outputs configured.
Condition: The identified block has inputs that are configured but has no connected outputs. This error applies to the Trip Cycle Time Monitor function and the Event Latches.
Example: *Warning – Trip Cycle Mon 1 is used but has no outputs configured.*
The Trip Cycle Time Monitor 1 function is configured as 'Used' but the block output is not connected to any other blocks.
<table>
<thead>
<tr>
<th>Text:</th>
<th>Warning – <code><block identifier></code> is configured but has no outputs connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified block has inputs that are configured but has no connected outputs. This error applies to all configurable logic blocks.</td>
</tr>
<tr>
<td>Example:</td>
<td>Error – Logic Block 3 is configured but has no outputs connected. Logic Block 3 is of type AND with 2 inputs configured but the block output is not connected to any other blocks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text:</th>
<th>Warning – <code><block identifier></code> is configured as analog but has no analog outputs connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified analog/discrete input is configured as analog but none of the block's analog output indications are connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text:</th>
<th>Warning – <code><block identifier></code> is configured as discrete but has no discrete outputs connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified analog/discrete input is configured as discrete but input's discrete indication is not connected to any other block inputs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error – <code><block identifier></code> is set to an invalid or out-of-range value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>The identified block has inputs that are configured to values that are not allowed or are out of range. This error applies to the Overspeed Trip Setting and the Temporary Overspeed Trip Setting. These settings are not permitted to exceed the input frequency range of 32 KHz.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text:</th>
<th>Error – Proposed configuration contains data that is invalid (out-of-range).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition:</td>
<td>A setting has been detected that is out of the range allowed. This error condition needs to be corrected in the Programming and Configuration Tool (PCT) and should be reported to Woodward for correction.</td>
</tr>
</tbody>
</table>
Error Messages and Solutions

Configuration Error

If a configuration error exists, the Configuration Error Log must be reviewed. See “View Configuration Error Log” section in this chapter.

NOTE: The configuration check is performed by the ProTech-SX after a settings file is loaded to the ProTech. The PCT must be connected to the ProTech-SX to see this log. The results are stored in volatile memory so a power cycle would
Chapter 11.
ProTech-SX Configuration Worksheet

ProTech Part Number: ________________ Date: ________________

ProTech Serial Number: ________________

Site/Application: ________________

CONFIGURATION FUNCTIONS (Minimum Required)

Configuration of the unit for Overspeed and over Acceleration Protection, can be done directly on the front panel display. Configuration of all other product features is done via the PCT software.

CONFIGURATION MENU
- **SPEED SUBMENU**
 - **Speed Manager**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Redundancy</td>
<td>Single / Dual</td>
<td>Single</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redundant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Speed</td>
<td>0-32000 rpm</td>
<td>100 rpm</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redundant Speed</td>
<td>TRIP / ALARM</td>
<td>TRIP</td>
<td></td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPEED INPUTS
- Input 1 Probe Type
- Input 2 Probe Type
- No. Gear Teeth
- Gear Ratio
- Overspeed Trip
- Sudden Speed Loss

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input 1 Probe Type</td>
<td>Passive / Active</td>
<td>Passive</td>
<td></td>
</tr>
<tr>
<td>Input 2 Probe Type</td>
<td>Passive</td>
<td>Passive</td>
<td></td>
</tr>
<tr>
<td>No. Gear Teeth</td>
<td>1-320</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Gear Ratio</td>
<td>0.10 - 10</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>Overspeed Trip</td>
<td>100-32000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Sudden Speed Loss</td>
<td>TRIP / ALARM</td>
<td>ALARM</td>
<td></td>
</tr>
</tbody>
</table>

ACCELERATION
- Enable Acceleration Trip
- Accel. Trip
- Enabled Speed
- Acceleration Trip

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Acceleration Trip</td>
<td>Yes / No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Accel. Trip</td>
<td>0-32000 rpm</td>
<td>1000 rpm</td>
<td></td>
</tr>
<tr>
<td>Enabled Speed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration Trip</td>
<td>0-25000 rpm/s</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
START LOGIC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Fail Setpoint</td>
<td>0-25000 rpm</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Speed Fail Trip</td>
<td>Used / Not Used</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>Speed Fail Alarm</td>
<td>Used / Not Used</td>
<td>Used</td>
<td></td>
</tr>
<tr>
<td>Speed Fail Timeout Trip</td>
<td>Used / Not Used</td>
<td>Used</td>
<td></td>
</tr>
<tr>
<td>Speed Fail Timeout Time</td>
<td>00:00:01 to 08:00:00</td>
<td>00:00:10</td>
<td>(10 sec)</td>
</tr>
</tbody>
</table>

TRIP LATCH –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Configuration</td>
<td>De-Energize to Trip / Energize to Trip</td>
<td>De-Energize to Trip</td>
<td></td>
</tr>
</tbody>
</table>

ANALOG OUTPUT –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed at 4 mA</td>
<td>0-32000 rpm</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Speed at 20 mA</td>
<td>0-32000 rpm</td>
<td>32000</td>
<td></td>
</tr>
</tbody>
</table>

TEST MODES –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Overspeed Trip</td>
<td>0-32000 rpm</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Temporary Overspeed Trip Timeout</td>
<td>00:00:00 to 00:30:00</td>
<td>00:00:20</td>
<td>(20 sec)</td>
</tr>
<tr>
<td>Simulated Speed Timeout</td>
<td>00:00:00 to 00:30:00</td>
<td>00:00:20</td>
<td>(20 sec)</td>
</tr>
</tbody>
</table>

MODBUS –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>RS-232 / RS-485</td>
<td>RS-232</td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>19200, 38400, 57600, 115200</td>
<td>19200</td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>Even / Odd / None</td>
<td>No Parity</td>
<td></td>
</tr>
<tr>
<td>Slave Address</td>
<td>1-247</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Enable Write Commands</td>
<td>Yes / No</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

CONFIGURATION MANAGEMENT –

No user settings here – this provides a list of the CRC values calculated from each section of programming logic.

PASSWORD CHANGE –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Level Password</td>
<td>AAAAAAA</td>
<td></td>
</tr>
<tr>
<td>Config Level Password</td>
<td>AAAAAAA</td>
<td></td>
</tr>
</tbody>
</table>
OPTIONAL PROGRAMMING/CONFIGURATION FEATURES -

Configuration of the Optional Programmable Inputs & Outputs is done through the PCT software. The table below is provided to document any custom I/O that is used in the system. The internal programming logic gates and latches that are programmed to utilize these signals need to be documented by the user.

PROGRAMMABLE INPUTS

<table>
<thead>
<tr>
<th>Input 1 Mode</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Name:</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Not Used</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>Lo setpt:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 2 Mode</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Name:</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Not Used</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>Lo setpt:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 3 Mode</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Name:</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Not Used</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>Lo setpt:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 4 Mode</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Name:</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Not Used</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>Lo setpt:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input 5 Mode</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Name:</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Not Used</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>Lo setpt:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>
Input 6 Mode

<table>
<thead>
<tr>
<th>Name: __________________</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Used</td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td></td>
<td>Lo setpt:</td>
</tr>
<tr>
<td></td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

Input 7 Mode

<table>
<thead>
<tr>
<th>Name: __________________</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Used</td>
<td>4 mA value:</td>
</tr>
<tr>
<td>Discrete Input</td>
<td>20 mA value:</td>
</tr>
<tr>
<td>Analog Input</td>
<td>LoLo setpt:</td>
</tr>
<tr>
<td></td>
<td>Lo setpt:</td>
</tr>
<tr>
<td></td>
<td>Hi setpt:</td>
</tr>
<tr>
<td></td>
<td>HiHi setpt:</td>
</tr>
</tbody>
</table>

RESET LOGIC –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurable Reset Source</td>
<td>List of all Inputs and Logic block outputs</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>(allows user to create a reset pulse driven from internal logic or from an additional DI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resettable Trip Use</td>
<td>Used / Not Used</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>(a reset clears this trip)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Input Selection</td>
<td>DI 1-7</td>
<td>DI 1</td>
<td></td>
</tr>
<tr>
<td>DI for Resettable TRIP (if USED)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTHER OUTPUTS –

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Option/Range</th>
<th>Default</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable Output Relay 1</td>
<td>List of all Inputs and Logic block outputs</td>
<td>Alarm</td>
<td></td>
</tr>
<tr>
<td>Input – (Relay Driver Function)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Non Inverting / Inverting</td>
<td>Non-Inverting</td>
<td></td>
</tr>
<tr>
<td>Programmable Output Relay 2</td>
<td>List of all Inputs and Logic block outputs</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>Input – (Relay Driver Function)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Non Inverting / Inverting</td>
<td>Non-Inverting</td>
<td></td>
</tr>
<tr>
<td>Programmable Output Relay 3</td>
<td>List of all Inputs and Logic block outputs</td>
<td>Not Connected</td>
<td></td>
</tr>
<tr>
<td>Input – (Relay Driver Function)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarity</td>
<td>Non Inverting / Inverting</td>
<td>Non-Inverting</td>
<td></td>
</tr>
<tr>
<td>ANALOG OUTPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed at 4 mA</td>
<td>0-32000 rpm</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Speed at 20 mA</td>
<td>0-32000 rpm</td>
<td>32000</td>
<td></td>
</tr>
</tbody>
</table>