

## Product Manual 26734 (Revision J, 12/2023) Original Instructions



# 3103 Gas Valve with EM35MR Electric Powered Actuator

Installation and Operation Manual



Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment.

General Precautions Practice all plant and safety instructions and precautions.

Failure to follow instructions can cause personal injury and/or property damage.



Revisions

This publication may have been revised or updated since this copy was produced. The latest version of most publications is available on the Woodward website.

#### http://www.woodward.com

If your publication is not there, please contact your customer service representative to get the latest copy.



Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.



If the cover of this publication states "Translation of the Original Instructions" please note:

Translated Translated Translated Translated Translated Translated Translated Translation was made. The latest version of most publications is available on the Woodward website.

#### www.woodward.com/publications

Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

If your publication is not on the Woodward website, please contact your customer service representative to get the latest copy.

Revisions— A bold, black line alongside the text identifies changes in this publication since the last revision.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, no responsibility is assumed by Woodward unless otherwise expressly undertaken.

Manual 26734 Copyright © Woodward, Inc. 2014 - 2023 All Rights Reserved

# Contents

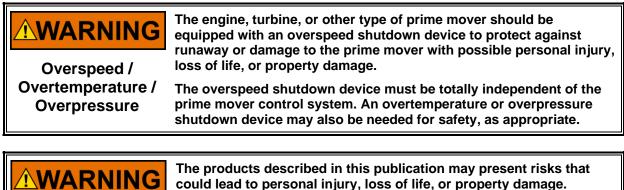
| WARNINGS AND NOTICES                                                                                                                                                                                                                       | 3                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELECTROSTATIC DISCHARGE AWARENESS                                                                                                                                                                                                          | 4                                                                                                                                                                                  |
| REGULATORY COMPLIANCE                                                                                                                                                                                                                      | 5                                                                                                                                                                                  |
| CHAPTER 1. GENERAL INFORMATION<br>Introduction<br>EM35MR Actuator<br>Resolver<br>Applications                                                                                                                                              | 8<br>9<br>9                                                                                                                                                                        |
| CHAPTER 2. INSTALLATION<br>Unpacking<br>Power Requirements<br>EM Actuator/3103 Gas Valve Installation<br>Piping Installation<br>Electrical Connections                                                                                     | 10<br>10<br>17<br>17                                                                                                                                                               |
| CHAPTER 3. DESCRIPTION OF OPERATION<br>EM35MR Actuator                                                                                                                                                                                     | 21<br>21                                                                                                                                                                           |
| CHAPTER 4. ACTUATOR/VALVE CALIBRATION<br>EM35MR Actuator/3103 Gas Valve with Driver                                                                                                                                                        |                                                                                                                                                                                    |
| CHAPTER 5. TROUBLESHOOTING AND FIELD REPLACEMENT<br>General<br>Troubleshooting                                                                                                                                                             | 25                                                                                                                                                                                 |
|                                                                                                                                                                                                                                            |                                                                                                                                                                                    |
| Procedure for EM35 Actuator Field Replacement                                                                                                                                                                                              | 26<br><b>29</b><br>30                                                                                                                                                              |
| Procedure for EM35 Actuator Field Replacement<br>CHAPTER 6 VALVE SIZING-NON-DLE APPLICATIONS<br>Determination of Effective Area<br>Valve Sizing and the Effective Area Tables                                                              | 26<br>29<br>30<br>31                                                                                                                                                               |
| Procedure for EM35 Actuator Field Replacement<br>CHAPTER 6 VALVE SIZING-NON-DLE APPLICATIONS<br>Determination of Effective Area<br>Valve Sizing and the Effective Area Tables<br>Determining the Demand Required to Achieve Specific Flows | 26<br>29<br>30<br>31<br>35<br>36<br>36<br>36<br>37<br>38<br>38<br>38                                                                                                               |
| Procedure for EM35 Actuator Field Replacement                                                                                                                                                                                              | <ul> <li>26</li> <li>29</li> <li>30</li> <li>31</li> <li>35</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>38</li> <li>39</li> </ul>                         |
| Procedure for EM35 Actuator Field Replacement                                                                                                                                                                                              | <ul> <li>26</li> <li>29</li> <li>30</li> <li>31</li> <li>35</li> <li>36</li> <li>36</li> <li>36</li> <li>37</li> <li>38</li> <li>38</li> <li>38</li> <li>39</li> <li>40</li> </ul> |

# **Illustrations and Tables**

| Figure 2-1a. EM35MR Actuator/3103 Gas Valve/Resolver Outline (NPT electrical conduit entries)<br>Figure 2-1b. EM35MR Actuator/3103 Gas Valve/Resolver Outline<br>Figure 2-2a. EM35MR Actuator/3103 Gas Valve/Resolver Outline<br>Figure 2-2b. EM35MR Actuator/3103 Gas Valve/Resolver Outline<br>Figure 2-3a. EM35MR Actuator/3103 Gas Valve 900 psig PED/Resolver Outline<br>Figure 2-3b. EM35MR Actuator/3103 Gas Valve 900 psig PED/Resolver Outline<br>Figure 2-4. WAGO 264 Series Terminal Block<br>Figure 3-1. Conduit Plug (M25 Shown) & Warning Label<br>Figure 5-1. Where to Locate the Coupling Assembly<br>Figure 5-2. Identifying the Coupling Clamp Screw<br>Figure 5-3. Removing Socket Head Cap Screws | 12<br>13<br>14<br>15<br>16<br>20<br>22<br>26<br>27 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Table 2-1. Class 600 Bolt Length and DiameterTable 6-1. 3103 1.0 in² port, Effective AreaTable 6-2. 3103 1.5 in² port, Effective AreaTable 6-3. 3103 2.0 in² port, Effective Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32<br>33                                           |

The following are trademarks of Woodward, Inc.: MicroNet NetCon Woodward

The following are trademarks of their respective companies: Teflon (DuPont Company) Viton (DuPont Performance Elastomers) WAGO (WAGO Corporation)


# Warnings and Notices

## **Important Definitions**



This is the safety alert symbol used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER** Indicates a hazardous situation, which if not avoided, will result in death or serious injury.
- **WARNING** Indicates a hazardous situation, which if not avoided, could result in death or serious injury.
- **CAUTION** Indicates a hazardous situation, which if not avoided, could result in minor or moderate injury.
- NOTICE Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT** Designates an operating tip or maintenance suggestion.



Personal Protective Equipment

- The products described in this publication may present risks that could lead to personal injury, loss of life, or property damage. Always wear the appropriate personal protective equipment (PPE) for the job at hand. Equipment that should be considered includes but is not limited to:
- Eye Protection
- Hearing Protection
- Hard Hat
- Gloves
- Safety Boots
- Respirator

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.

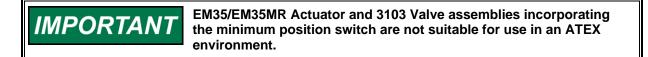


Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

# **Electrostatic Discharge Awareness**

| <b>NOTICE</b><br>Electrostatic<br>Precautions | <ul> <li>Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts:</li> <li>Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).</li> <li>Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.</li> <li>Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.</li> <li>To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.</li> </ul> |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Follow these precautions when working with or near the control.


- 1. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
  - Do not touch any part of the PCB except the edges.
  - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
  - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

# **Regulatory Compliance**

#### **European Compliance for CE Marking:**

These listings are limited only to those units bearing the CE Marking.

| Pressure Equipment<br>Directive (Valve): | Directive 2014/68/EU on the harmonisation of the laws of the Member<br>States relating to making pressure equipment available on the market.<br>PED Category II<br>PED Module H – Full Quality Assurance                                 |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATEX Directive<br>(Actuator& Resolver):  | Directive 2014/34/EU on the harmonisation of the laws of the Member<br>States relating to equipment and protective systems intended for use in<br>potentially explosive atmospheres.<br>Zone 1: II 2 G, Ex db IIB T3 Gb SIRA 13ATEX1188X |



#### Other European Compliance:

Compliance with the following European Directives or standards does not qualify this product for application of the CE Marking:

| ATEX (Valve):        | Exempt from the ATEX Directive 2014/34/EU as non-electrical equipment bearing no potential ignition sources per EN ISO 80079-36:2016 for Zone 1 installation                                                                                                                                                                                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMC Directive:       | Not applicable to this product. Electromagnetic, EMC, passive devices are excluded from the scope of the 2014/30/EU Directive.                                                                                                                                                                                                                                              |
| Machinery Directive: | Compliant as partly completed machinery with Directive 2006/42/EC of the European Parliament and the Council of 17 May 2006 on machinery.                                                                                                                                                                                                                                   |
| RoHS Directive:      | Restriction of Hazardous Substances 2011/65/EU:<br>Woodward Turbomachinery Systems products are intended exclusively for<br>sale and use only as a part of Large Scale Fixed Installations per the<br>meaning of Art.2.4(e) of directive 2011/65/EU. This fulfills the requirements<br>stated in Art.2.4(c) and as such the product is excluded from the scope of<br>RoHS2. |

#### North American Compliance:

These listings are limited only to those units bearing the UL and/or CSA identification.

Suitability for use in North American Hazardous Locations is the result of compliance of the individual components:

| Actuator and Resolver:      | CSA Certified for Class I, Division 1, Groups C & D, Class I, Division 2, Groups B, C, and D, T3 at 93 °C Ambient. For use in Canada and the United States. Certificate 1006295                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum Position<br>Switch: | CSA Certified for Class I, Division 1, Groups C & D, Class II, Division 2, Groups E, F, and G. LR57324. UL Listed for Class I, Division 1, Groups C & D, Class II, Division 2, Groups E, F, and G. E14274 |

#### **Special Conditions for Safe Use**

Wiring must be in accordance with North American Class I, Division 1 or 2 or European Zone 1 wiring methods as applicable, and in accordance with the authority having jurisdiction.

Ambient Temperature: (-40 to +93) °C / (-40 to +200) °F Fuel Temperature: (-40 to +149) °C / (-40 to +300) °F

Use supply wires suitable for a maximum ambient temperature of +93 °C.

For ATEX Zone 1 and Zone 2 Applications: A conduit seal must be installed within 50 mm (2 inches) of the conduit entries when the EM35MR Actuator and EM Resolvers are used in a Zone 1 or a Zone 2 ATEX classified explosive atmosphere. These are Category 2, flameproof, and type 'd' products.

For Class I, Division 1 or Class I, Zone 1 North American Applications: A conduit seal must be installed within 45 cm (18 inches) of the conduit entry when the EM35MR Actuator or EM Resolvers are used in a Class I, Division 1 or Class I, Zone 1 hazardous atmosphere.

The surface of the gas valve is dependent upon the temperature of the fuel. Refer to the burn hazard warning statement below for safe handling. Fuel temperature effects on valve surface temperature must be taken into consideration when this product is used in an explosive atmosphere.

| It should be noted that the following flame paths have a maximum constructional gap that is smaller than IEC 60079-1 requires. |                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| <br>Flame Path                                                                                                                 | Max Gap, ic (mm) Comment                                                                         |  |
| Actuator Cover to                                                                                                              | Per drawing 9989-4011, the max gap permitted on                                                  |  |
| Housing                                                                                                                        | this flat joint is 0.099 mm / 0.0039 inch.                                                       |  |
| Actuator Adaptor                                                                                                               | Per drawing 9989-4011, the max gap permitted on                                                  |  |
| Plate to Housing                                                                                                               | this flat joint is 0.099 mm / 0.0039 inch.                                                       |  |
| Resolver Cover to Housing                                                                                                      | Per drawing 9989-4013, the max gap permitted on this flat joint is 0.102 mm / 0.004 inch.        |  |
| Resolver Shaft                                                                                                                 | Per drawing 9989-4013, the max gap permitted on this cylindrical joint is 0.152 mm / 0.006 inch. |  |
| Actuator Shaft                                                                                                                 | Per drawing 9989-4011, the max gap permitted on this cylindrical joint is 0.152 mm / 0.006 inch. |  |

|                                                                                                                                                                                 | EXPLOSION HAZARD—Do not connect or disconnect while circuit is live unless area is known to be non-hazardous. |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                 | Substitution of components may impair suitability for Class I, Division 1 or 2 or Zone 1 or 2 applications.   |  |
|                                                                                                                                                                                 |                                                                                                               |  |
| <b>AVERTISSEMENT</b><br>RISQUE D'EXPLOSION—Ne pas raccorder ni débrancher<br>tant que l'installation est sous tension, sauf en cas<br>l'ambiance est décidément non-dangereuse. |                                                                                                               |  |

La substitution de composants peut rendre ce matériel inacceptable pour les emplacements de Classe I, applications Division 1 ou 2 ou Zone 1 ou 2.

The surface of this product can become hot enough or cold enough to be a hazard. Use protective gear for product handling in these circumstances. Temperature ratings are included in the specification section of this manual.

WARNING alau driv are com pro thre sho

GENERAL CONDITIONS FOR SAFE USE—Turbine control system alarms, faults, or shutdowns that are initiated by the valve or valve driver should not be ignored. These alarms, faults, and shutdowns are intended to alert equipment operators of a potentially unsafe condition and to protect against personal injury, loss of life, or property damage. Valve position error alarm and shutdown thresholds should be set to values that prevent improper fuel metering flow rates during turbine light-off. Equipment operators should strictly follow turbine OEM start procedures, including purging of the gas turbine after failed start attempts.

The risk of electrostatic discharge for painted units is reduced by permanent installation, proper connection of the equipotential ground lugs, and care when cleaning. Painted units must not be cleaned or wiped off/against unless the area is known to be non-hazardous.



POTENTIAL ELECTROSTATIC CHARGING HAZARD INSTRUCTIONS: The risk of electrostatic discharge for painted units is reduced by permanent installation, proper connection of the equipotential ground lugs, and care when cleaning. Painted units must not be cleaned or wiped off/against unless the area is known to be nonhazardous.

## Chapter 1. General Information

## Introduction

Use the EM35MR electric actuator to drive a 3103-gas valve, closed loop to position demand. A resolver connected to the valve-metering sleeve provides position feedback. Closed loop position control is accomplished through an EM 24 V Digital Driver. Having the feedback on the valve allows repair or changing of the motor assembly in the field without the loss of valve calibration.

#### 3103 Gas Valve

NOTICE

The 3103 Gas Valve is a stainless-steel valve capable of metering gas flow between 23 kg/h and 18 144 kg/h (50 lb/h and 40 000 lb/h). The valve is designed to bolt into a 50 mm (2 inch) line by means of 0.625-11 UNC 2B tapped holes. The flange is class 600 per ANSI B16.5. The valve design is a rotary metering sleeve and a shoe-type throttling valve. The valve shoe is spring- and pressure-loaded against the metering port to minimize leakage and to self-clean the metering port. Metering port area is determined by input shaft positioning from the actuator. The valve has an internal spring to return the valve to the minimum fuel position in the event of a power loss to the actuator.

The 3103 valve has redundant seals on all dynamic sealing surfaces. Between these two seals is an overboard vent which vents any gasses that may leak past the first seal to safe vent location. The use of an inner-seal vent prevents the second dynamic seal from seeing any differential pressure and thus offers protection against the leakage of gasses from the valve into the surrounding ambient atmosphere.

The valve design incorporates an inlet guide tube to condition the inlet flow and to direct any gas contaminants through the metering port, minimizing any accumulation in the valve housing. The metering sleeve support bearings are positively sealed from the gas. Internal valve parts are made of through-hardened stainless steel.

The valve has mechanical stop screws installed in the valve flange. Customer, do not adjust these stops. If these stops interfere with the valve-operating region or the electrical stops, it will cause the EM 24 V Digital Driver to trip out on overcurrent.

| NOTICE | The customer installation should provide proper fuel filtration and adequate heating to prevent fuel saturation, constituent precipitation, |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|
|        | and/or hydrate formation on the valve-wetted parts. Performance degradation or valve failure may result.                                    |

| <b>NOTICE</b> The customer should take into account gas constituents that may cause adverse material compatibility issues. |
|----------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------|

| NOTICE | The customer should prevent installation debris from remaining on, around, or within the valve housing or actuator junction box. |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
|        | Electrical shorting or contamination of the product may result.                                                                  |

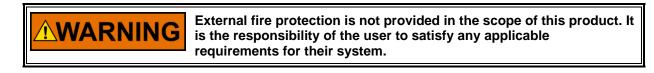
## **EM35MR** Actuator

The EM35MR actuator is an all-electric actuator designed for use in industrial gas turbine control applications. The EM35MR actuator consists of a high-performance brushless servomotor and a precision planetary gearbox with two resolver-type shaft position sensors. All stator windings are completely sealed. The use of a high efficiency gearbox facilitates high servo system bandwidth. The motor has its own resolver providing motor rotor position feedback, and the other resolver(s) provides accurate output shaft position feedback. The actuator also has a slip clutch to allow full speed impact into optional external rigid mechanical stops.

The motor assembly is housed in a cast aluminum explosion proof housing. A thermal potting compound is used to transfer waste heat generated by the motor, to the cast, explosion-proof housing and out to the ambient environment. Wiring to the motor is accomplished through two .750-14 NPT conduit connections or two M25 x 1.5 conduit connections into a wiring compartment integral to the housing. One conduit is for the motor power wires, the other is for the motor resolver wires. The motor output shaft is directly coupled to the valve input shaft with a stainless-steel torsional coupling.

## Resolver

Position feedback is accomplished using a highly accurate brushless resolver(s). The resolver is directly coupled to the valve-metering shaft through use of a stainless-steel bellows and is housed in an explosion proof enclosure. The resolver receives its excitation from the EM driver. The EM driver uses a resolver-to-digital converter to determine valve position using the output voltages from the resolver's two secondary windings. Resolver accuracy is  $\pm 0.05^{\circ}$ . Wiring to the resolver is accomplished through two .750-14 NPT conduit connections or two M25 x 1.5 conduit connections.


## Applications

The 3103/EM35MR is well suited for metering flow to a gas turbine that is in continuous operation. When used in applications where the turbine is frequently in a standby mode, remove power from the valve, or place it in a slow cycle relubrication mode. Either of these procedures will prevent accelerated wear on the actuator. See Woodward application note 51424 for additional information and/or contact Woodward for details on how to implement these procedures.

# Chapter 2. Installation

## Unpacking

Be careful when unpacking the EM 24 V Digital Driver and EM35MR actuator/3103 gas valve. Check the devices for signs of damage such as bent or dented case and loose or broken parts. If damage is found, notify the shipper immediately. The devices may be stored in their original shipping containers until they are ready for installation. Protect the devices from weather and from extreme humidity or temperature fluctuations during storage.





The 3103/EM35MR assembly weight is approximately 44 kg (96 lb). In order to prevent injury, use a lifting strap or other means of lifting assistance when handling this product.



Due to typical noise levels in turbine environments, wear hearing protection when working on or around the 3103 Gas Valve.



The surface of this product can become hot enough or cold enough to be a hazard. Use protective gear for product handling in these circumstances. Temperature ratings are included in the specification section of this manual.

## **Power Requirements**

The EM35MR actuator receives all of its power from the EM driver. The full actuator operating range of the actuator is (18 to 32) V (dc). The maximum steady state driver input current is 15 A continuous with peaks of 37 A for 50 ms.



EXPLOSION HAZARD—For Zone 1 / Division 1 products: Proper torque is very important to ensure that the unit seals properly. Actuator cover bolt torque is: 0.250-28 socket head cap screw = 9.2 N·m (81 lb-in) M6 x 1 socket head cap screw = 8.0 N·m (71 lb-in) Resolver cover bolt torque is 9.2 N·m (81 lb-in).

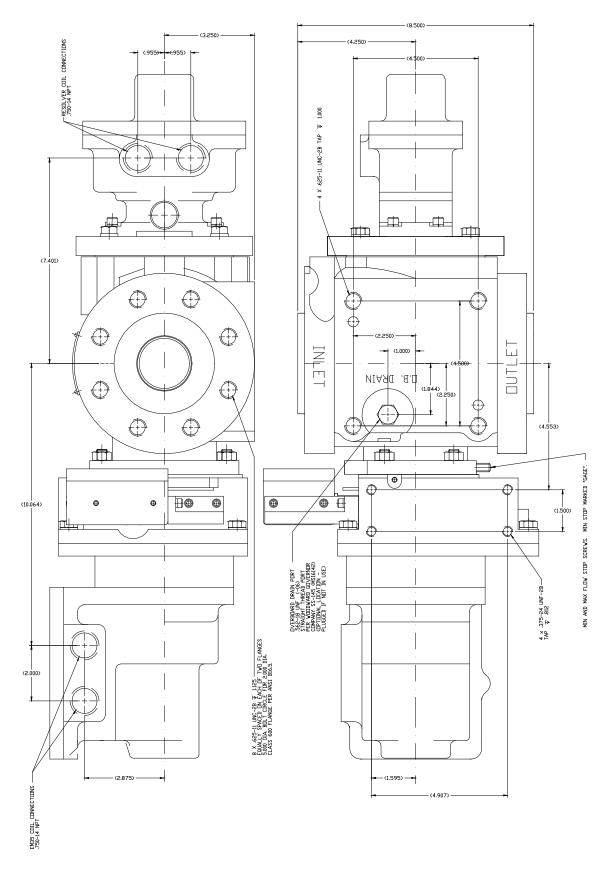



Figure 2-1a. EM35MR Actuator/3103 Gas Valve/Resolver Outline (NPT electrical conduit entries)

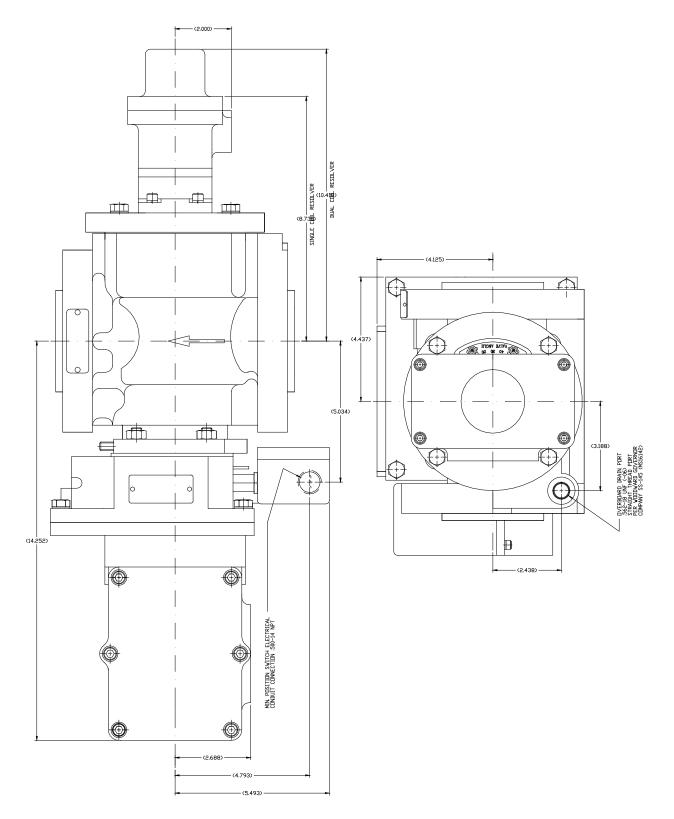



Figure 2-1b. EM35MR Actuator/3103 Gas Valve/Resolver Outline (NPT electrical conduit entries)



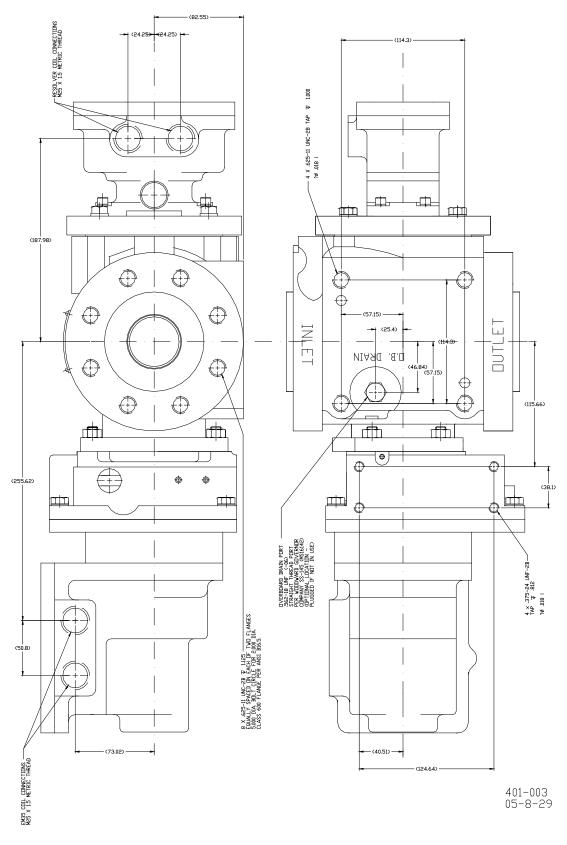
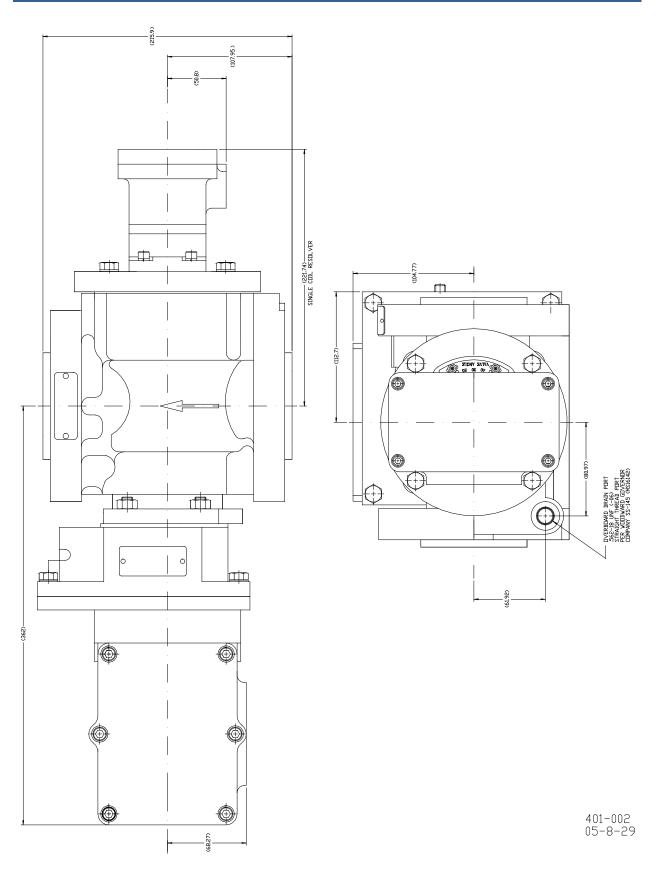
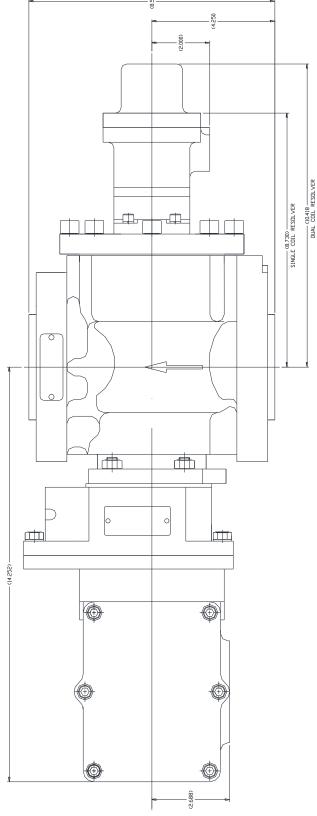
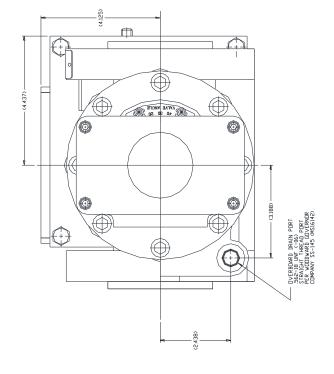
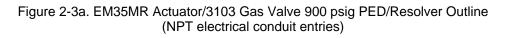



Figure 2-2a. EM35MR Actuator/3103 Gas Valve/Resolver Outline (metric electrical conduit entries)

#### Manual 26734



Figure 2-2b. EM35MR Actuator/3103 Gas Valve/Resolver Outline (metric electrical conduit entries)

#### Manual 26734





401-012A (9999-1445) 2011-12-16



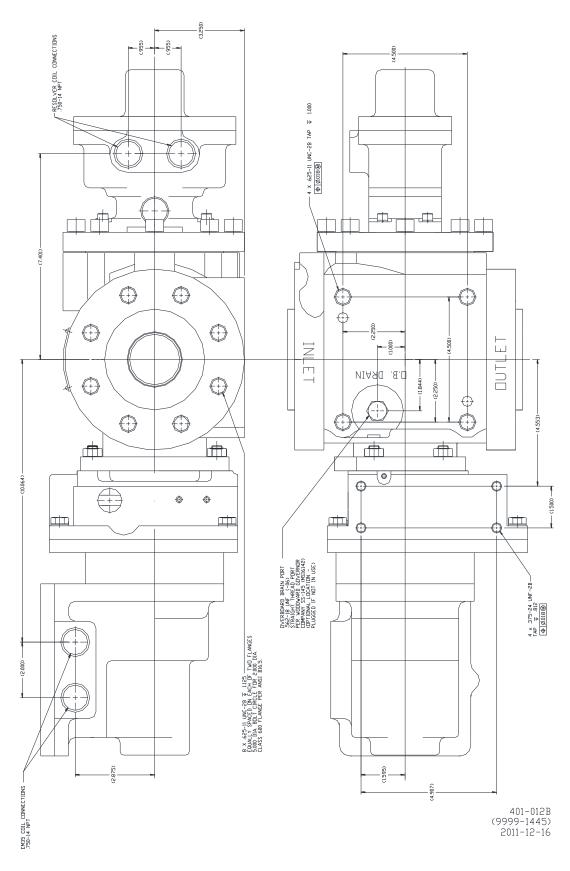


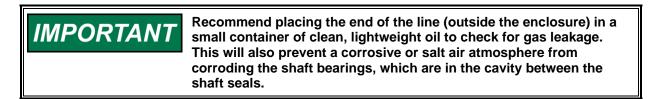

Figure 2-3b. EM35MR Actuator/3103 Gas Valve 900 psig PED/Resolver Outline (NPT electrical conduit entries)

## EM Actuator/3103 Gas Valve Installation

For most applications, the 50 mm (2 inch) flanges when bolted into the system piping can support the valve/actuator assembly. For applications where this is not practical or where additional support is required, the assembly can be bolted to a supporting structure by the four 0.625-11 UNC-2B tapped holes in the valve base.

See Figures 2-1/2-2/2-3 for overall dimensions, installation hole locations, and any fitting or plumbing connections. Installation attitude does not affect valve/ actuator performance.

Make sure to allow adequate room for required wiring and that the wiring and valve/actuator are accessible for service.


There are two overboard drains on the 3103 valves (see Figures 2-1/2-2/2-3). One is to be plumbed to an area outside the turbine enclosure. Use the overboard drain most convenient for your installation and plug the one that is not used. This drain vents the cavities between the inner and outer seals on both ends of the valve shaft.

WARNING

EXPLOSION HAZARD—The overboard drain port vents process fuel to the atmosphere. The overboard drain gas volume may increase as temperatures drop below 0 °C (32 °F). Plan the vent system, taking temperature affects into consideration. Vent the drain ports to a safe location away from the turbine enclosure or any hazardous location / explosive atmosphere. Protect the vent line from obstruction, physical damage, condensation, or corrosion.

| NOTICE |
|--------|
|--------|

DO NOT plug both drains. This can cause pressure to build up in the vent cavity and potentially damage the valve.



## **Piping Installation**

Refer to ASME B16.5 for details of flange, gasket, and bolt types and dimensions.

The gas fuel control valve is designed for support by the piping flanges alone; additional supports are neither needed nor recommended.

Verify that the process piping centerline-to-flange-face dimensions meet the requirements of the outline drawings (Figures 2-1/2-2/2-3) within standard piping tolerances. The valve should mount between the piping interfaces such that the flange bolts can be installed with only manual pressure applied to align the flanges. Mechanical devices such as hydraulic or mechanical jacks, pulleys, chain-falls, or similar should never be used to force the piping system to align with the valve flanges.

Use ASTM/ASME SA-449 grade or better bolts or studs to install the valve into the process piping. The bolt length and diameter for Class 600 flanges shall conform to Table 2-1.

| Nominal Pipe | Number of | Diameter of | Stud Length | Machine Bolt |
|--------------|-----------|-------------|-------------|--------------|
| Size         | Bolts     | Bolts       |             | Length       |
| 51 mm /      | 8         | 16 mm /     | 108.0 mm /  | 88.9 mm /    |
| 2 inch       |           | 5/8 inch    | 4.25 inch   | 3.50 inch    |

Flange gasket materials should conform to ASME B16.20. The user should select a gasket material which will withstand the expected bolt loading without injurious crushing, and which is suitable for the service conditions.

When installing the valve into the process piping, it is important to torque the stud/bolts properly in the appropriate sequence in order to keep the flanges of the mating hardware parallel to each other. Recommend a two-step torque method. Once the studs/bolts are hand tightened, torque the studs/bolts in a crossing pattern to half the required torque. After torqueing all studs/bolts to half the appropriate value, repeat the pattern until obtaining the rated torque value.

## **Electrical Connections**



Manual 26734

Improper grounding of the product can result in electric shock or electrocution. Installation of a protective earth ground at the provided terminal lugs on the valve is required for safe installation.



Wire and cable installation of the product should take into account proper cable support or strain relief to prevent stress on the cable or internal wire connections at the terminals.

#### **Shielded Wiring**

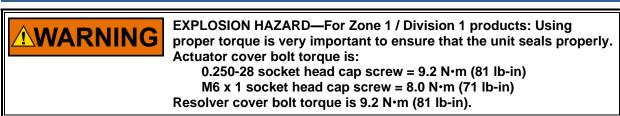
All shielded cable must be twisted conductor pairs with either a foil or a braided shield.

Shield all signal lines to prevent picking up stray signals from adjacent equipment.

Connect the shields as shown in the plant-wiring diagram in EM Driver manual 26159. Wire exposed beyond the shield must not exceed two inches. Leave the other end of the shield open and insulated from any other conductor.

Do not run shielded signal wires with other wires carrying large currents.

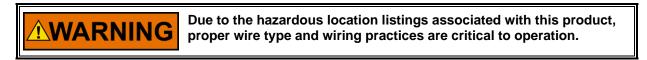
See application note 50532, EMI Control in Electronic Governing Systems, for more information.


Installations with severe electromagnetic interference (EMI) may require shielded cable run in conduit, double shielded wire, or other precautions. Contact Woodward for more information.





Explosion Proof / Flame Proof Covers: Do not damage the cover seal, the cover surface, the threads, or the actuator or resolver surface while removing or replacing the cover.

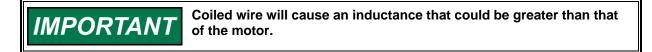

3103 Gas Valve with EM35MR Actuator



**IMPORTANT** The EM35MR Actuator and EM Resolvers are certified as type 'd' (flameproof enclosure) ATEX Category 2 equipment, suitable for use in a Zone 1 explosive atmosphere. Either wiring methods must comply with this Zone 1-Category 2 method of protection when installed in a Zone 1 or a Zone 2 classified atmosphere. Conduit seals are required. Refer to the Special Conditions for Safe Use stated on page v.

### **Plant Wiring**

Manual 26734




NOTICE

Do not connect any cable grounds to "instrument ground", "control ground", or any non-earth ground system.

Consult the EM Driver manual (26159) for plant wiring diagram, and for specific wiring requirements and procedures.

1. Power wiring between the motor and the driver: Cut off and discard any extra motor wire in the installation do not coil.



- 2. The metering valve is not shipped with any field wiring attached (such as pigtails) but rather is provided with internal terminal blocks for field wiring. These terminal blocks are located under the explosion proof covers on the actuator and resolver housings.
- The non-metric actuator housing has two 0.75 inch NPT taps and the resolver housing has two .750-14 NPT taps. The metric actuator housing has two M25 x 1.5 taps and the resolver housing has two M25 x 1.5 taps.
- 4. The resolver wires need to run through the wiring connection in front of the 10-pole WAGO terminal block. The actuator power wires should go through the other wiring connection.

The terminal blocks provided for the motor resolver wires and the position resolver are WAGO 264 series. These terminal blocks are top load terminal blocks and actuated by inserting a DIN 5264 screwdriver into the opening behind the wire slot. Once opening the cage clamp, insert the wire and remove the screwdriver. Please see the illustration and instructions below.

#### Manual 26734

Insert screwdriver into the operating slot up to the stop.

Insert the screwdriver into the operating slot up to the stop.

Use the screwdriver blade to hold the clamping spring open until introducing the conductor into the clamping unit.

The conductor automatically clamps when the screwdriver is withdrawn.

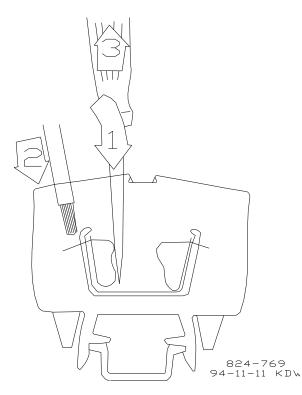



Figure 2-4. WAGO 264 Series Terminal Block

# Chapter 3. Description of Operation

## **EM35MR** Actuator

The EM35MR electric actuator is comprised of a brushless dc motor, a clutch assembly, a gearhead assembly, and an explosion proof housing. The brushless dc motor uses Samarium Cobalt permanent magnets bonded and sleeved to the rotor. The high-speed motor output shaft is clutched before the gearbox assembly. This clutch prevents damage to the motor shaft and gearbox should an external force suddenly stop the rotation of the gearbox output shaft. The clutch slips at 1.5 times the maximum output force of the motor/gearbox assembly. The motor gearbox is a planetary gearbox and reduces the output speed and increase the output torque.

The control signals for the motor come from an external motor driver. The motor driver handles motor commutation as well as closed loop position control. The position feedback comes from a precision resolver directly coupled to the valve-metering sleeve. This arrangement prevents any errors in sensing the desired valve position through linkages and gear trains, resulting in precise position control. Having the feedback on the valve also allows repair or replacement of the motor in the field without any loss of calibration.

The entire motor assembly is installed within a cast explosion proof housing. The motor is heat sunk to this external housing to allow transfer of heat generated by the motor to the ambient environment.

The output shaft of the gear train is supported by two roller bearings. To minimize side load to the motor the output shaft is directly coupled to the valve using a stainless-steel torsional coupling. The torsional coupling efficiently transmits the motor torque to the valve with very little lost motion and is key to achieving the desired position control of the valve.

## 3103 Gas Valve

Movement of the actuator output shaft positions the gas valve metering sleeve and resolver. Gas flow is metered at the valve through a ported rotary sleeve. Gas enters the inlet port (P1) where it is directed through the inlet guide tube to the rotary metering port. A spring and pressure loaded sharp edged shoe seals against the metering sleeve. Metered fuel is discharged at the outlet pressure. Metered fuel is determined by valve position, inlet pressure (P1), outlet pressure (P2), gas temperature, and gas composition.

## Water Ingress Protection

#### **NOTICE** The 3103/EM35MR valve assembly does not carry an Ingress Protection rating and can be damaged by water exposure. Follow the water protection considerations to prevent motor damage.

The following are considerations for protecting the EM35MR actuator from water damage:

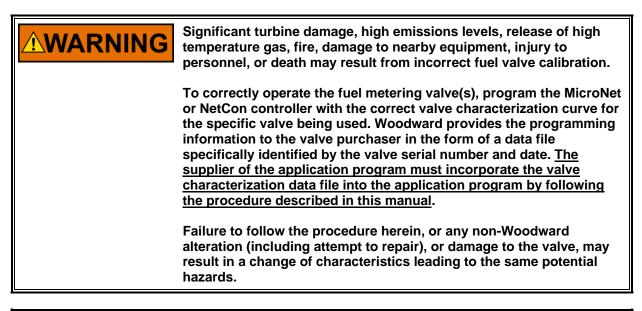
- 1. **Turbine Water Wash Process:** Some customers perform a water wash of the turbine compressor section, which can result in incidental water spray directed onto the actuator. Properly protect the 3103/EM35MR valve assembly from this water spray.
- 2. **Conduit Fittings:** Woodward recommends using rigid or flexible conduit to route the actuator wiring. Woodward also recommends using watertight conduit fittings when installing the wiring to the actuator.
- 3. **Conduit Plug:** If one of the actuator conduit ports remains unused, securely install the supplied steel plug with a non-hardening pipe thread sealant. Do not over-tighten.
- 4. **Power Wash:** The valve and actuator assembly should NOT be pressure / power washed. If there is other equipment in the vicinity that is being pressure washed, adequately protect the 3103/EM35MR assembly from incidental water spray.



Figure 3-1. Conduit Plug (M25 Shown) & Warning Label

## Chapter 4. Actuator/Valve Calibration

## EM35MR Actuator/3103 Gas Valve with Driver


For calibration details, see the Dry Low Emissions, Fuel Metering Valves: Warnings, Calibration, and Installation manual (40142). For non-DLE systems, see the EM 24 V Digital Driver manual (26159).

The EM35MR actuator/gas valves used with the digital driver is typically for applications that require extremely high accuracy, like dry low emissions (DLE) control. For that reason, all calibration of the actuator/valve assembly is performed at the factory.

The mechanical stops on the valve limit valve travel and prevent damage to the valve caused by driving it beyond its normal range. Flow calibration is achieved using the digital resolver feedback and a valve characterization table. The flow vs. angle data is determined for each valve during the flow testing and test results are uploaded to Woodward.com.

No field rigging is required to calibrate the valve. There is a warning tag on the valve and a warning message on the operator panel stating that the table identification (serial number and date code) must match the valve identification.

For non-DLE applications, Woodward offers a series of standard 3103/EM35MR valves. From the factory, these valves have the minimum and maximum stops set outside the normal operating window of 0 to 60 degrees valve travel, and the flow calibration schedule is not for a specific application. To determine the minimum and maximum flow valve positions, and any intermediate open loop flow schedule points, follow the steps in Chapter 6: Valve Sizing.





Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.

| exc | PLOSION HAZARD—Improper valve positioning may cause<br>essive fuel delivery to the engine, resulting in an explosion.<br>efully check the following warnings:                                                                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1) | Proper configuration of the resolver offset is required for the valve correct calibration and for the valve to position correctly. Every valve has a different position offset number. Enter these values into the valve driver prior to engine operation.                                                                       |
| (2) | Proper configuration of the backup demand tracking error,<br>position error, and resolver feedback error settings are critical<br>for the valve driver to correctly identify differences in position<br>demand. Enter these values into the valve driver prior to engine<br>operation. Recommend the use of the driver defaults. |
| (3) | Recommend setting the valve to "Drive to Minimum" position for<br>the shutdown configuration to reduce the risk of over-fuel of the<br>engine when a shutdown is issued.                                                                                                                                                         |
| (4) | 3103 valve calibration files (*.vlv) should not be edited. Editing<br>these files can create an unstable operational mode and may<br>result in erratic behavior or excessive fuel delivery to the engine.                                                                                                                        |
| (5) | 3103 valve calibration files (*.vlv) loaded into the turbine control<br>should be verified to match the serial number of the valve they<br>are intended to control. Failure to verify that the serial number<br>matches may result in excessive fuel delivery to the engine.                                                     |
| (6) | Calibrate the turbine control analog demand to the driver to verify that the proper 4 mA to 20 mA signal is provided. Failure to do so may result in excessive fuel delivery to the engine.                                                                                                                                      |
| (7) | After any field service to the valve, perform a verification of the valve minimum stop reading to the valve test report (TSP). A shift in the valve resolver may cause excessive fuel delivery to the engine.                                                                                                                    |

# Chapter 5. Troubleshooting and Field Replacement

## General

Faults in the governing system are usually revealed as speed variations of the prime mover, but it does not necessarily follow that such speed variations indicate governing system faults. Therefore, when improper speed variations appear, check all components including the prime mover for proper operation.

Problems with the 3103/EM35MR assembly will usually show up as faults in the driver. Refer to the appropriate EM 24 V Driver manual (26159) for detailed fault information.

Overcurrent trips experienced by the driver can be caused by driving the valve into (or operating too close to) the mechanical stops. Use these stop screws for calibration purposes only and are backed out of the valve operating range before shipment to the customer.

| Problem                                  | Symptom                                                                      | Solution                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Erratic or<br>Unstable<br>Operation      | Uncontrollable or unstable valve operation.                                  | Electromagnetic interference may be causing noise on<br>feedback signal to driver or no driver demand signal. Refer to<br>the Woodward wiring best practices manual 51204 for<br>installation guides.                                                                                                                                                   |
|                                          |                                                                              | Feedback resolver signals may be swapped.                                                                                                                                                                                                                                                                                                               |
|                                          |                                                                              | Motor wire may be contacting intermittently or is loose.<br>Check motor wire terminals for loose connections.                                                                                                                                                                                                                                           |
|                                          | Valve will not enter run mode when reset.                                    | Motor phase connections may be swapped. Check motor<br>wiring. If one phase is swapped, the motor will try to operate<br>in reverse, causing it to drive into the minimum stop.                                                                                                                                                                         |
|                                          | No fault signals present,<br>but valve will not operate.                     | Feedback resolver signals may be connected but are<br>swapped. Check Sin and Cos terminal connections. Driver<br>diagnostics may register that a proper connection is made,<br>but the connections may be on the wrong terminals.                                                                                                                       |
|                                          | Inaccurate fuel delivery.                                                    | The fuel gas accuracy is critical for accurate fuel metering.<br>Verify that the gas Lower Heating Value (LHV), Specific<br>Gravity (Sg), Ratio of Specific Heats (k), Compressibility (z),<br>fuel temperature, and fuel pressure are all correct.                                                                                                     |
|                                          |                                                                              | Verify resolver offset is input correctly.                                                                                                                                                                                                                                                                                                              |
|                                          |                                                                              | DLE Valves—Verify the valve calibration (*.vlv) file is entered into the control, and the correction table serial number matches the valve serial number.                                                                                                                                                                                               |
| Position Error<br>(Shutdown<br>Position) | During run time, the valve<br>will check if the position<br>feedback and the | Check if there is an obstruction in the valve. Check if the valve metering elements need to be cleaned. Check pressure ratings.                                                                                                                                                                                                                         |
|                                          | demanded position are<br>the same. If not, a                                 | Check to see if the motor makes a "grinding" noise when actuated.                                                                                                                                                                                                                                                                                       |
|                                          | position error will be flagged, and the valve will                           | Check for water damage inside the actuator junction box.                                                                                                                                                                                                                                                                                                |
|                                          | be shut down.                                                                | Verify that the commanded position is not greater than the<br>pre-set, mechanically limiting max stop position of the valve<br>model. The valve is normalized to the full 60-degree travel<br>and thus will be unable to achieve 100% position if the max-<br>stop is set below 60 degrees.<br>Set the controller's equivalent 100% to the pre-set max. |

## Troubleshooting

## **Procedure for EM35 Actuator Field Replacement**

The EM35 actuator may be replaced in the field without affecting the calibration of the valve/actuator assembly. This procedure describes the steps necessary to perform an actuator replacement in the field.

Required Tools: 3/16" ball hex driver, 6" long, 3/8" drive 5/16" ball hex driver, 6" long, 3/8" drive 3/8" drive ratchet 5/16" hex Allen wrench 3/8" drive torgue wrench, capable of 33.2 N•m (24.5 lb-ft)

## Procedure

1. Locate the coupling assembly between the 3103 gas valve and the EM35 actuator; viewed through the long vertical slot in the adapter housing.

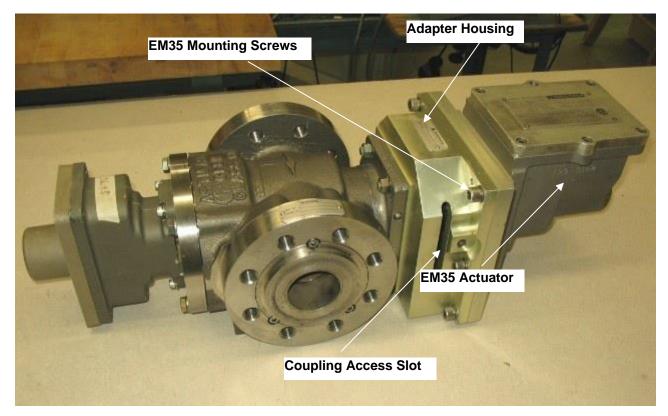



Figure 5-1. Where to Locate the Coupling Assembly

2. Using the 3/16" ball hex driver, loosen the socket head cap screw that clamps the coupling assembly to the EM35 output shaft. Do not loosen the clamp screw that mounts the coupling assembly to the valve shaft.



Figure 5-2. Identifying the Coupling Clamp Screw

3. Using the 5/16" Allen wrench, remove the five socket head cap screws and lock washers that mount the EM35 actuator to the adapter housing. Remove the EM35 actuator from the assembly.



Figure 5-3. Removing Socket Head Cap Screws

4. Before installing the new EM35 actuator, properly orient the unit so the two lining pins for the actuator match up with the corresponding holes in the adapter housing. If necessary, rotate the shaft of the EM35 motor by hand to properly orient the splines up with those of the coupling assembly.

When everything is in position, first slip the actuator shaft into the coupling assembly, then line up the pins of the actuator with the adjacent holes in the adapter housing. The actuator should mate up without any binding or use of significant force.

#### Manual 26734

- 5. Once the actuator is in proper position, re-install the five socket head cap screws and lock washers removed in step 3. Torque the bolts to 33.2 N·m (24.5 lb-ft).
- Using the 3/16" long ball hex driver and torque wrench, tighten the socket head cap screw on the coupling at the EM35 output shaft. Torque to 9.3 N•m (82 lb-in).
- 7. Reconnect field wiring to EM35 actuator terminal blocks.
- 8. Perform valve-stroking procedure, verifying the valve can be stroked from the minimum to maximum stop.

# Chapter 6 Valve Sizing-Non-DLE Applications

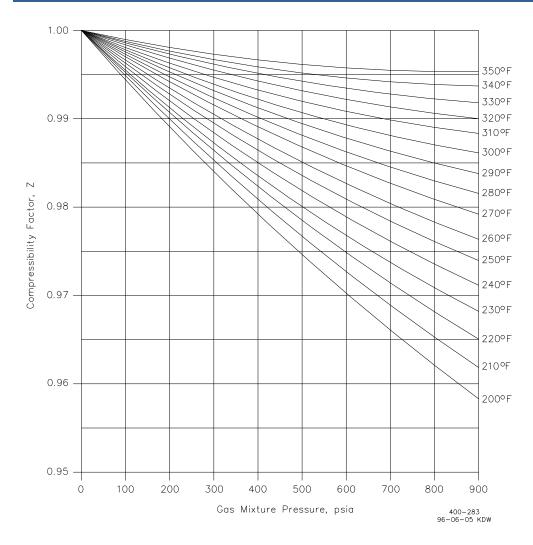
## **Determination of Effective Area**

In order to choose the proper size of valve for an application, the effective area required to meet your maximum flow requirement must first be determined. The effective area is determined using the following equations.

$$R7(K) = \left(\frac{2}{1+K}\right)^{\frac{K}{K-1}}$$

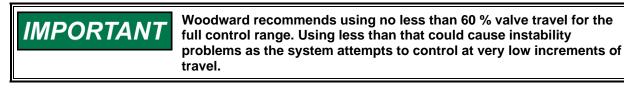
$$f \quad \frac{P2}{P1} \ge R7 \qquad \text{Effective}\_\text{Area} \quad = \frac{\text{FLOW}}{\left[3955.289 \cdot P1 \cdot \sqrt{\left[\frac{K \cdot \text{Sg}}{(K-1) \cdot \text{T} \cdot \text{Z}}\right] \cdot \left[\left(\frac{P2}{P1}\right)^{K} - \left(\frac{P2}{P1}\right)^{K}\right]}\right]}$$

$$\int \frac{P2}{P1} < R7$$
 Effective\_Area = 
$$\frac{FLOW}{\left[3955.289 \cdot P1 \cdot \sqrt{\left[\frac{K \cdot Sg}{(K-1) \cdot T \cdot Z}\right] \cdot \left(\frac{2}{R7^{K}} - R7^{\frac{1+K}{K}}\right)}\right]}$$


Where:

- P1 = Valve inlet pressure (psia)
- P2 = Valve discharge pressure (psia)
- K = Ratio of specific heats for the gas
- (1.300 typical for standard natural gas at 60 °F)
  Sg = Specific gravity relative to air for the gas
- (0.60 typical for standard natural gas)
- Flow = Valve metered flow (lb/h)

IMPORTANT


- T = Temperature of the gas (Deg Rankine) (Deg R = Deg F + 459.7)
- Z = Gas Compressibility Factor (essentially 1 for most applications—see the following graph)

#### Select the valve size to be adequate for worst-case flow conditions. This would be minimum P1, maximum P2, maximum flow, and maximum temperature.



## Valve Sizing and the Effective Area Tables

Once the effective area has been determined, move to the effective area tables later in this chapter. The effective area table has % valve travel, demand mA, and valve angle listed in the first three columns. The following ten columns list the valve effective area for pressure ratios (P2/P1) from 0.05 to 0.95 respectively. To pick the proper size valve for an application, move to the sheet that has a value for effective area greater than or equal to that determined above in the 100 % travel row for the applicable pressure ratio column.



## **Determining the Demand Required to Achieve Specific Flows**

To determine demand values necessary to achieve a specific flow at end or intermediate points once the valve size is set, is very similar to the process used for sizing the valve. First, determine the necessary valve effective area for the flow point. Interpolate between pressure ratios and demand columns to determine at what percent/mA/valve angle the flow will be achieved.

#### Notes on the Valve Sizing and Application Program

The algorithm used for sizing and demand value determination used in the standard valve application programs available for the 3103 is the same as that described above. However, the program makes use of a valve inlet pressure compensation algorithm that enhances the accuracy of the calculation. This compensation scheme is not easily implemented in a manual system as described here. Therefore, the demand values determined using the methods described here would be slightly different from those determined using the application programs. Since this difference is small, the use of the application program is not necessary for the sizing/application of standard valves.

|                        |        |          |          |          |          |          |          |          | ap       | ie       | 6-0      | 1        | 31       | 03       | ٦.       | 01       | <u>۲</u> | pc       | лτ,      | , E      | πe       | CU       | ve       | A        | rea      | 1        |          |          |          |          |         |
|------------------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
|                        | 0.95   | 0.000517 | 0.002517 | 0.006048 | 0.011676 | 0.019213 | 0.028567 | 0.039672 | 0.051417 | 0.065109 | 0.080651 | 0.096763 | 0.116644 | 0.138006 | 0.161671 | 0.186544 | 0.214734 | 0.244918 | 0.277058 | 0.311874 | 0.350258 | 0.390794 | 0.433496 | 0.481632 | 0.530191 | 0.58495  | 0.64309  | 0.707164 | 0.77641  | 0.850793 | 0.92862 |
|                        | 0.85   | 0.000682 | 0.002643 | 0.006314 | 0.012016 | 0.019709 | 0.029038 | 0.040536 | 0.052747 | 0.06807  | 0.0832   | 0.100802 | 0.120916 | 0.141415 | 0.166079 | 0.19161  | 0.219556 | 0.249593 | 0.281981 | 0.317    | 0.354956 | 0.395567 | 0.438702 | 0.485295 | 0.534196 | 0.587494 | 0.644286 | 0.704086 | 0.765023 | 0.837028 | 0.92862 |
|                        | 0.75   | 0.000762 | 0.002796 | 0.006528 | 0.012285 | 0.020176 | 0.029712 | 0.041372 | 0.05317  | 0.067442 | 0.084197 | 0.102132 | 0.121907 | 0.144755 | 0.168142 | 0.195174 | 0.223055 | 0.254099 | 0.286769 | 0.322144 | 0.359668 | 0.400306 | 0.441353 | 0.488265 | 0.533155 | 0.587288 | 0.642622 | 0.698165 | 0.760268 | 0.820973 | 0.92862 |
|                        | 0.65   | 0.000861 | 0.002957 | 0.006857 | 0.012773 | 0.020707 | 0.030431 | 0.042342 | 0.054926 | 0.069344 | 0.086327 | 0.10513  | 0.125658 | 0.148472 | 0.173156 | 0.199404 | 0.228845 | 0.259894 | 0.293191 | 0.330097 | 0.367555 | 0.40695  | 0.450513 | 0.49475  | 0.541886 | 0.588903 | 0.641498 | 0.702241 | 0.760268 | 0.820973 | 0.92862 |
| tio (P2/P1)            | 0.55   | 0.00106  | 0.003164 | 0.007204 | 0.013244 | 0.021357 | 0.031429 | 0.043643 | 0.056745 | 0.07185  | 0.089693 | 0.109084 | 0.130507 | 0.154103 | 0.179773 | 0.206895 | 0.23748  | 0.268687 | 0.302898 | 0.339526 | 0.37772  | 0.417849 | 0.461373 | 0.506218 | 0.55306  | 0.603415 | 0.652262 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
| Pressure Ratio (P2/P1) | 0.45   | 0.00126  | 0.003454 | 0.007565 | 0.01372  | 0.022114 | 0.032501 | 0.044673 | 0.058889 | 0.074694 | 0.092506 | 0.113071 | 0.135686 | 0.160401 | 0.187127 | 0.215081 | 0.246095 | 0.279469 | 0.314429 | 0.352007 | 0.390906 | 0.43291  | 0.476249 | 0.51943  | 0.56635  | 0.62072  | 0.670282 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
|                        | 0.35   | 0.001526 | 0.00392  | 0.007884 | 0.014062 | 0.022525 | 0.033075 | 0.045127 | 0.060059 | 0.075679 | 0.094578 | 0.115514 | 0.138721 | 0.16383  | 0.190605 | 0.2198   | 0.251683 | 0.285949 | 0.321422 | 0.359608 | 0.399695 | 0.441035 | 0.48585  | 0.527719 | 0.56635  | 0.62072  | 0.670282 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
|                        | 0.25   | 0.001808 | 0.004071 | 0.008139 | 0.014411 | 0.022911 | 0.033444 | 0.045473 | 0.06042  | 0.076578 | 0.095258 | 0.116604 | 0.139321 | 0.164679 | 0.192068 | 0.221606 | 0.253217 | 0.287995 | 0.32387  | 0.362255 | 0.399695 | 0.441035 | 0.48585  | 0.527719 | 0.56635  | 0.62072  | 0.670282 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
|                        | 0.15   | 0.0022   | 0.004201 | 0.008391 | 0.014686 | 0.023129 | 0.033704 | 0.045694 | 0.060776 | 0.076908 | 0.095228 | 0.116967 | 0.139902 | 0.165077 | 0.193022 | 0.222766 | 0.253217 | 0.287995 | 0.32387  | 0.362255 | 0.399695 | 0.441035 | 0.48585  | 0.527719 | 0.56635  | 0.62072  | 0.670282 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
|                        | 0.05   | 0.002337 | 0.004383 | 0.008714 | 0.014965 | 0.023371 | 0.033982 | 0.045984 | 0.06132  | 0.076908 | 0.095228 | 0.116967 | 0.139902 | 0.165077 | 0.193022 | 0.222766 | 0.253217 | 0.287995 | 0.32387  | 0.362255 | 0.399695 | 0.441035 | 0.48585  | 0.527719 | 0.56635  | 0.62072  | 0.670282 | 0.712481 | 0.760268 | 0.820973 | 0.92862 |
| Valve                  | Angle  | +        | ŝ        | 5        | 7        | 6        | 11       | 13       | 15       | 17       | 19       | 21       | 23       | 25       | 27       | 29       | 31       | 33       | 35       | 37       | 39       | 41       | 43       | 45       | 47       | 49       | 51       | 53       | 55       | 57       | 59      |
| Driver                 | mA     | 4.27     | 4.80     | 5.33     | 5.87     | 6.40     | 6.93     | 7.47     | 8.00     | 8.53     | 9.07     | 9.60     | 10.13    | 10.67    | 11.20    | 11.73    | 12.27    | 12.80    | 13.33    | 13.87    | 14.40    | 14.93    | 15.47    | 16.00    | 16.53    | 17.07    | 17.60    | 18.13    | 18.67    | 19.20    | 19.73   |
| %                      | travel | 1.67     | 5.00     | 8.33     | 11.67    | 15.00    | 18.33    | 21.67    | 25.00    | 28.33    | 31.67    | 35.00    | 38.33    | 41.67    | 45.00    | 48.33    | 51.67    | 55.00    | 58.33    | 61.67    | 65.00    | 68.33    | 71.67    | 75.00    | 78.33    | 81.67    | 85.00    | 88.33    | 91.67    | 95.00    | 98.33   |

3103 Gas Valve with EM35MR Actuator

Manual 26734

| 0.15         0.25         0.35         0.45           0.006658         0.003404         0.003253         0.005576         0           0.01937         0.009225         0.008499         0         0           0.01937         0.019018         0.013866         0.017997         0           0.01937         0.019018         0.013253         0.003499         0         0           0.01937         0.019018         0.013253         0.003975         0         0         0           0.011066         0.070615         0.094913         0.032719         0.03975         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th> (I.</th>                                                                                                                                                                                                                                               | (I.                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 0.003733         0.003404         0.002621         0.           0.005658         0.005373         0.005576         0.           0.005557         0.005576         0.005576         0.           0.005577         0.005576         0.005576         0.           0.00578         0.005473         0.005576         0.         0.           0.005748         0.005453         0.005475         0.         0.           0.071066         0.070615         0.034719         0.0330975         0.           0.071066         0.070615         0.0669425         0.048368         0.           0.071066         0.070615         0.069425         0.068783         0.           0.071066         0.121732         0.121732         0.121732         0.193182         0.           0.187681         0.187219         0.186386         0.149165         0.         0.           0.121732         0.121732         0.121732         0.149165         0.         0.           0.187681         0.187219         0.186386         0.149165         0.         0.           0.2255824         0.2559426         0.220747         0.         0.364576         0.           0.256932         0.                                                                                                                                                                                                                      | 55 0.65 0.75 0.85               |
| 0.006658         0.006313         0.005853         0.005576         0.           0.01937         0.019018         0.018666         0.017997         0.           0.01937         0.019018         0.018666         0.017997         0.           0.005537         0.031719         0.008499         0.         0.017997         0.           0.0050748         0.03497         0.008475         0.008475         0.019375         0.           0.071066         0.070615         0.069425         0.068783         0.         0.048768         0.           0.071056         0.070615         0.0694139         0.094139         0.031719         0.         0.048768         0.           0.071056         0.121732         0.121732         0.121308         0.11915         0.         0.           0.187681         0.187219         0.186386         0.183583         0.         0.94576         0.           0.187681         0.187219         0.186386         0.183583         0.         0.460226         0.           0.187681         0.187219         0.266335         0.2664309         0.220747         0.         0.           0.2559426         0.266335         0.266326         0.266326 <td< th=""><th>2372 0.002078 0.001843 0.001646</th></td<>                                                                                                                                   | 2372 0.002078 0.001843 0.001646 |
| 0.009595         0.009271         0.009225         0.008499         0           0.01937         0.019018         0.018666         0.017997         0           0.050748         0.031719         0.030975         0         0           0.071066         0.070615         0.049786         0.048368         0           0.071066         0.070615         0.068425         0.068783         0           0.071066         0.070615         0.069425         0.068783         0           0.09497         0.094513         0.094139         0.031782         0           0.153291         0.15275         0.121732         0.11915         0           0.187681         0.187219         0.186386         0.149965         0           0.187681         0.187219         0.186386         0.149955         0           0.187681         0.187219         0.186386         0.149955         0           0.255922         0.266355         0.226637         0.220747         0           0.255922         0.266356         0.264309         0.220747         0           0.255922         0.266356         0.264309         0.260747         0           0.255922         0.226529                                                                                                                                                                                                                         | 5038 0.004714 0.004428 0.004153 |
| 0.01937         0.019018         0.01937         0.01937         0.01937         0.017997         0.           0.055748         0.050453         0.031719         0.030975         0.           0.071066         0.070615         0.069425         0.068783         0.           0.071066         0.070615         0.069425         0.068783         0.           0.09497         0.094513         0.094139         0.031915         0.           0.0121928         0.121732         0.121732         0.11915         0.           0.153291         0.152765         0.152095         0.149965         0.           0.187681         0.187219         0.186386         0.14915         0.           0.187681         0.187219         0.186386         0.149165         0.           0.225607         0.225607         0.2264309         0.220747         0.           0.266355         0.264309         0.220747         0.         0.304576         0.           0.2559426         0.266330         0.220747         0.220747         0.         0.466323         0.400226         0.           0.2569426         0.266335         0.226635         0.2264309         0.2610738         0.         0.610778                                                                                                                                                                                          | 7942 0.007526 0.007101 0.0068   |
| 0.032537         0.032199         0.031719         0.030975         0           0.071066         0.070615         0.049786         0.048368         0           0.071066         0.070615         0.069425         0.068783         0           0.071066         0.070615         0.0694139         0.092182         0           0.121928         0.121732         0.121308         0.11915         0           0.153291         0.15276         0.152095         0.149965         0           0.187681         0.187219         0.186386         0.149965         0           0.187681         0.187219         0.186386         0.149965         0           0.225607         0.225607         0.223669         0.261082         0           0.266355         0.266336         0.2664309         0.261082         0           0.2559224         0.355824         0.355028         0         0           0.3030873         0.309865         0.304576         0         0           0.3558224         0.355824         0.355028         0         0         0           0.466323         0.466323         0.460226         0         0         0           0.510738                                                                                                                                                                                                                                    | 7168 0.016424 0.015901 0.015443 |
| 0.050748         0.050453         0.049786         0.048368         0.           0.071066         0.070615         0.069425         0.068783         0.           0.121928         0.121732         0.121308         0.11915         0.           0.15276         0.152095         0.149965         0.         0.           0.15275         0.152095         0.149965         0.         0.           0.187681         0.187219         0.186386         0.149965         0.           0.187681         0.187219         0.186386         0.149965         0.           0.187681         0.187219         0.186386         0.149965         0.           0.226607         0.225607         0.225667         0.264309         0.261082           0.266355         0.264309         0.261082         0.304576         0.           0.355824         0.355824         0.3550289         0.         0.4002269         0.           0.355824         0.355824         0.355629         0.304576         0.         0.           0.355824         0.355824         0.355629         0.400226         0.         0.452629         0.           0.3559242         0.35592426         0.5559426         0.5                                                                                                                                                                                                     | 9645 0.028811 0.027876 0.027126 |
| 0.071066         0.070615         0.069425         0.068783         0.           0.09497         0.094513         0.092182         0.         0.092182         0.           0.121928         0.121732         0.152095         0.14915         0.         0.           0.153291         0.15275         0.152095         0.149965         0.         0.           0.187681         0.187219         0.186386         0.149965         0.         0.           0.187681         0.187219         0.186386         0.149965         0.         0.           0.225607         0.225607         0.225635         0.264309         0.261082         0.           0.266355         0.266356         0.2664309         0.261082         0.         0.304576         0.           0.355824         0.355824         0.355824         0.3569426         0.3645766         0.           0.406323         0.406323         0.406323         0.4002266         0.         0.559426         0.           0.510738         0.510738         0.510738         0.510738         0.510738         0.           0.559426         0.559426         0.559426         0.559426         0.559426         0.           0.510738 </th <th>6005 0.044153 0.042741 0.041143</th>                                                                                                                                                 | 6005 0.044153 0.042741 0.041143 |
| 0.09497         0.094513         0.092182         0           0.121928         0.15275         0.152095         0.11915         0           0.153291         0.15275         0.152095         0.149965         0           0.187681         0.187219         0.186386         0.149965         0           0.187681         0.187219         0.186386         0.149965         0           0.225607         0.225607         0.225697         0.220747         0           0.26635         0.264309         0.261082         0         0           0.309873         0.309873         0.308655         0.20747         0           0.355824         0.355824         0.355824         0.355029         0           0.355824         0.355824         0.355824         0.355029         0           0.406323         0.406323         0.400226         0         0           0.405323         0.406323         0.400226         0         0           0.510738         0.510738         0.510738         0.510738         0           0.559426         0.559426         0.559426         0.559426         0           0.510738         0.510738         0.510738         0.510738 </th <th>6366 0.063605 0.061651 0.059441</th>                                                                                                                                                                          | 6366 0.063605 0.061651 0.059441 |
| 0.121928         0.121732         0.121308         0.11915         0           0.15275         0.152095         0.149965         0         0           0.15761         0.152095         0.149965         0         0           0.187681         0.187219         0.186386         0.183583         0           0.225607         0.225607         0.223669         0.220747         0           0.225635         0.2264309         0.220747         0         0           0.225635         0.2264309         0.220747         0         0           0.309873         0.309873         0.308655         0.304576         0           0.355824         0.355824         0.355824         0.3550289         0           0.406323         0.406323         0.400226         0         0         0.452629         0           0.455623         0.466323         0.400236         0.559426         0.559426         0         0         0         0           0.510738         0.510738         0.510738         0.510738         0.510738         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                  | 9092 0.085522 0.083244 0.08171  |
| 0.153291         0.15275         0.152095         0.149965         0           0.187681         0.187219         0.186386         0.183583         0           0.225607         0.225607         0.223669         0.220747         0           0.2255824         0.225635         0.2264309         0.220747         0           0.2255824         0.225635         0.2264309         0.220747         0           0.309873         0.309873         0.308655         0.304576         0           0.355824         0.355824         0.355824         0.350289         0           0.406323         0.406323         0.400226         0         0           0.452629         0.452629         0.452629         0         0           0.510738         0.510738         0.510738         0         0           0.510738         0.510738         0.510738         0         0           0.510738         0.510738         0.510738         0         0           0.510738         0.510738         0.510738         0         0           0.510738         0.510738         0.510738         0         0           0.559426         0.559426         0.559426         0 </th <th>5087 0.110557 0.108177 0.106065</th>                                                                                                                                                                                   | 5087 0.110557 0.108177 0.106065 |
| 0.187681         0.187219         0.186386         0.183583         0.           0.225607         0.225607         0.225697         0.220747         0.           0.26635         0.26635         0.26635         0.220747         0.           0.309873         0.309873         0.30873         0.2061082         0.           0.355824         0.355824         0.355824         0.355829         0.           0.455629         0.455629         0.4652629         0.452629         0.           0.4556229         0.4556229         0.4652629         0.         0.559426         0.           0.510738         0.510738         0.510738         0.510738         0.510738         0.           0.510738         0.510738         0.510738         0.510738         0.         0.559426         0.           0.518712         0.618712         0.618712         0.618712         0.618712         0.618712         0.           0.518712         0.516738         0.510738         0.749058         0.749058         0.749058         0.           0.749058         0.749058         0.749058         0.749058         0.749058         0.         0.823741         0.           0.749058         0.749058 <th>4845 0.139709 0.136596 0.133966</th>                                                                                                                                               | 4845 0.139709 0.136596 0.133966 |
| 0.225607         0.225607         0.225607         0.226635         0.226635         0.266355         0.266355         0.266355         0.261082         0           0.309873         0.309873         0.309873         0.308655         0.304576         0           0.355824         0.355824         0.355824         0.355824         0.304576         0           0.355824         0.355824         0.355824         0.355829         0         0           0.4652629         0.452629         0.452629         0.452629         0         0           0.510738         0.510738         0.510738         0.510738         0         0           0.559426         0.559426         0.559426         0.559426         0         0           0.510738         0.510738         0.510738         0.510738         0         0           0.559426         0.559426         0.559426         0.559426         0         0           0.518712         0.618712         0.618712         0.618772         0         0         0           0.518712         0.510738         0.749058         0.749058         0.749058         0         0           0.749058         0.749058         0.749058         0.7                                                                                                                                                                                              | 7472 0.172183 0.16825 0.165773  |
| 0.26635         0.26635         0.26635         0.26635         0.26635         0.261082         0           0.309873         0.309873         0.30873         0.308655         0.304576         0           0.355824         0.355824         0.355824         0.355824         0.355826         0           0.4652629         0.452629         0.452629         0.452629         0         0           0.510738         0.510738         0.510738         0.510738         0         0         0           0.510738         0.510738         0.510738         0.510738         0         0         0           0.510738         0.510738         0.510738         0.510738         0         0         0           0.559426         0.559426         0.559426         0.563701         0         0         0           0.518712         0.618712         0.618712         0.618712         0         0         0           0.51872701         0.582701         0.6827701         0.6827701         0         0         0           0.749058         0.749058         0.749058         0.749058         0.749058         0         0           0.823741         0.8923741         0.8923741 <th>3711 0.207669 0.204123 0.201105</th>                                                                                                                                                                  | 3711 0.207669 0.204123 0.201105 |
| 0.309873       0.309873       0.309873       0.30865       0.304576       0.         0.355824       0.355824       0.355824       0.355824       0.355829       0.         0.4652629       0.452629       0.452629       0.452629       0.       0.452629       0.         0.510738       0.510738       0.510738       0.510738       0.510738       0.         0.559426       0.559426       0.559426       0.559426       0.559426       0.         0.582701       0.569426       0.559426       0.510738       0.510738       0.         0.582701       0.569426       0.559426       0.510738       0.       0.510738       0.         0.582701       0.569426       0.559426       0.559426       0.599264       0.       0.         0.582701       0.682701       0.682701       0.682701       0.6827712       0.         0.749058       0.749058       0.749058       0.749058       0.749058       0.749058       0.         0.823741       0.823741       0.823741       0.823741       0.823741       0.       0.         0.8233741       0.8233741       0.8233741       0.8233741       0.893964       0.       0.         0.8999641 <th>3654 0.24654 0.242684 0.240496</th>                                                                                                                                                                                                             | 3654 0.24654 0.242684 0.240496  |
| 0.355824       0.355824       0.355824       0.355824       0.355824       0.350289       0         0.406323       0.406323       0.406323       0.400226       0         0.510738       0.510738       0.510738       0.510738       0         0.510738       0.510738       0.510738       0.610738       0         0.559426       0.559426       0.559426       0       0         0.559426       0.559426       0.559426       0.510738       0         0.510738       0.510738       0.510738       0       0         0.559426       0.559426       0.559426       0       0         0.582701       0.682701       0.682701       0       0         0.749058       0.749058       0.749058       0.749058       0         0.749058       0.749058       0.749058       0.749058       0         0.823741       0.823741       0.823741       0.823741       0         0.823741       0.823741       0.823741       0.823741       0         0.899964       0.899964       0.899964       0.899964       0         0.8939641       0.980641       0.980641       0.980641       0         0.980641                                                                                                                                                                                                                                                                                                  | 5002 0.289333 0.28461 0.283038  |
| 0.406323       0.406323       0.406323       0.406326       0         0.452629       0.452629       0.452629       0.452629       0         0.510738       0.510738       0.510738       0.510738       0.510738       0         0.559426       0.559426       0.559426       0.559426       0       0.510738       0         0.510738       0.510738       0.510738       0.510738       0.510738       0       0         0.559426       0.559426       0.559426       0.559426       0.559426       0       0         0.618712       0.618712       0.618712       0.618712       0       0       0       0         0.632701       0.682701       0.682701       0.682701       0.6982701       0       0         0.749058       0.749058       0.749058       0.749058       0.749058       0       0         0.749054       0.893964       0.8939641       0.8923741       0.823741       0       0         0.823741       0.823741       0.823741       0.823741       0.823741       0       0         0.8999644       0.89399641       0.980641       0.980641       0.980641       0       0         0.883357 <t< th=""><th>1501 0.335555 0.333172 0.330868</th></t<>                                                                                                                                                                                                                          | 1501 0.335555 0.333172 0.330868 |
| 0.452629         0.452629         0.452629         0.452629         0           0.510738         0.510738         0.510738         0.510738         0.510738         0           0.559426         0.559426         0.559426         0.559426         0.559426         0           0.618712         0.618712         0.618712         0.618712         0           0.682701         0.682701         0.682701         0         0.682701         0           0.749058         0.749058         0.749058         0.749058         0         0           0.749058         0.749058         0.749058         0.749058         0         0           0.749058         0.749058         0.749058         0.749058         0         0           0.749054         0.899964         0.899964         0.899964         0         0         0           0.823741         0.823741         0.823741         0.823741         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                    | 1239 0.386256 0.383911 0.382794 |
| 0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.510738         0.559426         0.559426         0.559426         0.559426         0.559426         0.559426         0.559426         0.559426         0.0518712         0.018712         0.018712         0.018712         0.0182701         0.682701         0.682701         0.618712         0.01749058         0.0749058         0.0749058         0.0749058         0.01749058         0.01749058         0.0839964         0.8939964         0.0839964         0.08999644         0.08999644         0.08999644         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.0980641         0.079144         1.0779144         1.0779144         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848                  | 3568 0.438844 0.437385 0.43747  |
| 0.559426         0.559426         0.559426         0.559426         0.           0.618712         0.618712         0.618712         0.618712         0.           0.682701         0.682701         0.682701         0.         0.682701         0.           0.749058         0.749058         0.749058         0.749058         0.749058         0.           0.749054         0.899964         0.899964         0.899964         0.899964         0.           0.823741         0.823741         0.823741         0.823741         0.         0.           0.829964         0.899964         0.899964         0.899964         0.         0.           0.8999641         0.899964         0.899964         0.899964         0.         0.           0.8999641         0.980641         0.980641         0.980641         0.         0.980641         0.           0.980641         0.980641         0.980641         0.980641         0.980641         0.         0.           1.079144         1.079144         1.079144         1.079144         1.         0.           1.177848         1.177848         1.177848         1.177848         1.         0.           1.268235         1.268235                                                                                                                                                                                                    | 0.496041 0.496346               |
| 0.618712         0.618712         0.618712         0.618712         0.618712         0.           0.682701         0.682701         0.682701         0.682701         0.682701         0.           0.749058         0.749058         0.749058         0.749058         0.749058         0.           0.823741         0.823741         0.823741         0.823741         0.0339964         0.           0.829964         0.899964         0.899964         0.899964         0.9809964         0.0980641         0.980641         0.           0.980641         0.980641         0.980641         0.980641         0.980641         0.         0.930641         0.           1         0.777848         1.177848         1.177848         1.177848         1.177848         1.           1         1.079144         1.079144         1.079144         1.079144         1.           1         1.177848         1.177848         1.177848         1.177848         1.           1         1.395999         1.395999         1.395999         1.395999         1.395999         1.                                                                                                                                                                                                                                                                                                                       | 9426 0.557189 0.558783 0.561691 |
| 0.682701         0.682701         0.682701         0.682701         0.682701         0.           8         0.749058         0.749058         0.749058         0.749058         0.749058         0.           1         0.823741         0.823741         0.823741         0.823741         0.           1         0.823741         0.823741         0.823741         0.823741         0.           1         0.823741         0.823741         0.823741         0.823741         0.           1         0.823964         0.899964         0.899964         0.899964         0.           1         0.980641         0.980641         0.980641         0.980641         0.           1         0.980641         0.980641         0.980641         0.980641         0.           1         1.079144         1.079144         1.079144         1.079144         1.           1         1.079144         1.079144         1.079144         1.         1.           1         1.079144         1.079144         1.079144         1.         1.           1         1.079144         1.079144         1.079144         1.         1.           1         1.079144         1.079144                                                                                                                                                                                                                          | 8712 0.615671 0.616748 0.61722  |
| 3         0.749058         0.749058         0.749058         0.749058         0.749058         0.           1         0.823741         0.823741         0.823741         0.823741         0.           1         0.823741         0.823741         0.823741         0.823741         0.           1         0.829964         0.899964         0.899964         0.899964         0.           1         0.980641         0.980641         0.980641         0.980641         0.           1         0.980641         0.980641         0.980641         0.980641         0.           1         1.079144         1.079144         1.079144         1.         1.           1         1.078148         1.177848         1.177848         1.           1         1.079144         1.079144         1.079144         1.           1         1.079148         1.177848         1.177848         1.           1         1.268235         1.268235         1.268235         1.268235         1.268235         1.395999         1.395999         1.                                                                                                                                                                                                                                                                                                                                                              | 2701 0.679821 0.684185 0.682624 |
| 0.823741         0.823741         0.823741         0.823741         0.           1         0.899964         0.899964         0.899964         0.           1         0.980641         0.980641         0.980641         0.980641         0.           1         0.980641         0.980641         0.980641         0.980641         0.         0.980641         0.           1         0.980641         0.980641         0.980641         0.980641         0.         0.980641         0.           1         1.079144         1.079144         1.079144         1.079144         1.         1.           1         1.078188         1.177848         1.177848         1.177848         1.           1         1.268235         1.268235         1.268235         1.268235         1.395999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.3955999         1.39559999         1.39559999                                                                                                                                        | 9058 0.749058 0.752745 0.752887 |
| 0.899964         0.899964         0.899964         0.899964         0.           0.980641         0.980641         0.980641         0.980641         0.           1.079144         1.079144         1.079144         1.079144         1.           1.177848         1.177848         1.177848         1.177848         1.           1.1268235         1.268235         1.268235         1.268235         1.395999         1.395599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3741 0.823741 0.823741 0.826002 |
| 0.980641         0.980641         0.980641         0.980641         0.980641         0           1         1.079144         1.079144         1.079144         1.079144         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.17784878         1.17784878         1.177848 <th>9964 0.899964 0.899964 0.899964</th> | 9964 0.899964 0.899964 0.899964 |
| 1.079144         1.079144         1.079144         1.079144         1.079144         1.079144         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.1777848         1.17                     | 0641 0.980641 0.980641 0.980641 |
| 1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848         1.177848                                  | 9144 1.079144 1.079144 1.079144 |
| 1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235         1.268235                                  | 7848 1.177848 1.177848 1.177848 |
| 1.395999 1.395999 1.395999 1.395999 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8235 1.268235 1.268235 1.268235 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5999 1.395999 1.395999 1.395999 |
| 504248 1.504248 1.504248 1.504248 1.504248 1.504248 1.504248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4248 1.504248 1.504248 1.504248 |

#### Table 6-2. 3103 1.5 in<sup>2</sup> port, Effective Area

Released

Valve angle = Resolver Feedback Angle – Resolve Offset Angle Resolver Offset Angle = ~20 degrees 4 mA = 0° valve angle = 0 % valve position = ~20 resolver angle min stop = -2 degrees valve angle max stop = 62 degrees valve angle

| %      | Driver | Valve |          |          |          |          | Pressure Ratio (P2/P1) | itio (P2/P1) |          |          |          |          |
|--------|--------|-------|----------|----------|----------|----------|------------------------|--------------|----------|----------|----------|----------|
| travel | шA     | Angle | 0.05     | 0.15     | 0.25     | 0.35     | 0.45                   | 0.55         | 0.65     | 0.75     | 0.85     | 0.95     |
| 1.67   | 4.27   | 1     | 0.002419 | 0.002148 | 0.002037 | 0.001683 | 0.001265               | 0.001097     | 0.00096  | 0.000911 | 0.000876 | 0.000827 |
| 5.00   | 4.80   | ŝ     | 0.007874 | 0.007177 | 0.006865 | 0.006546 | 0.006242               | 0.005892     | 0.005581 | 0.005399 | 0.005279 | 0.005182 |
| 8.33   | 5.33   | 5     | 0.01716  | 0.016504 | 0.016258 | 0.015983 | 0.015555               | 0.014843     | 0.014199 | 0.013758 | 0.013448 | 0.013292 |
| 11.67  | 5.87   | 7     | 0.031216 | 0.031003 | 0.030646 | 0.030225 | 0.02947                | 0.028172     | 0.026994 | 0.026115 | 0.025485 | 0.025177 |
| 15.00  | 6.40   | 6     | 0.051115 | 0.050983 | 0.050221 | 0.049317 | 0.048579               | 0.046731     | 0.044881 | 0.042712 | 0.041596 | 0.040822 |
| 18.33  | 6.93   | 11    | 0.074026 | 0.074026 | 0.073605 | 0.073406 | 0.071848               | 0.068822     | 0.065682 | 0.063897 | 0.062307 | 0.060108 |
| 21.67  | 7.47   | 13    | 0.102508 | 0.102508 | 0.101761 | 0.101079 | 0.099502               | 0.095418     | 0.091568 | 0.088779 | 0.086613 | 0.083901 |
| 25.00  | 8.00   | 15    | 0.134842 | 0.134842 | 0.134809 | 0.133707 | 0.131335               | 0.125792     | 0.120882 | 0.117067 | 0.114711 | 0.112719 |
| 28.33  | 8.53   | 17    | 0.172125 | 0.172125 | 0.171827 | 0.170514 | 0.166923               | 0.160766     | 0.154643 | 0.150549 | 0.147051 | 0.144979 |
| 31.67  | 9.07   | 19    | 0.213751 | 0.213751 | 0.213219 | 0.212483 | 0.208023               | 0.199912     | 0.192592 | 0.186929 | 0.184062 | 0.182352 |
| 35.00  | 9.60   | 21    | 0.25926  | 0.25926  | 0.25926  | 0.257323 | 0.251594               | 0.242773     | 0.23535  | 0.229494 | 0.225466 | 0.223829 |
| 38.33  | 10.13  | 23    | 0.306389 | 0.306389 | 0.306389 | 0.305598 | 0.299747               | 0.289753     | 0.281592 | 0.275951 | 0.27245  | 0.271474 |
| 41.67  | 10.67  | 25    | 0.360525 | 0.360525 | 0.360525 | 0.358722 | 0.352119               | 0.340968     | 0.33228  | 0.328254 | 0.32492  | 0.325606 |
| 45.00  | 11.20  | 27    | 0.41418  | 0.41418  | 0.41418  | 0.41418  | 0.407467               | 0.396576     | 0.385056 | 0.384244 | 0.382409 | 0.383905 |
| 48.33  | 11.73  | 29    | 0.471722 | 0.471722 | 0.471722 | 0.471722 | 0.467555               | 0.454539     | 0.448994 | 0.444711 | 0.445984 | 0.448668 |
| 51.67  | 12.27  | 31    | 0.529984 | 0.529984 | 0.529984 | 0.529984 | 0.529984               | 0.516409     | 0.511364 | 0.514637 | 0.516962 | 0.521363 |
| 55.00  | 12.80  | 33    | 0.598056 | 0.598056 | 0.598056 | 0.598056 | 0.598056               | 0.58592      | 0.581764 | 0.588404 | 0.59174  | 0.58875  |
| 58.33  | 13.33  | 35    | 0.671635 | 0.671635 | 0.671635 | 0.671635 | 0.671635               | 0.663707     | 0.661849 | 0.666392 | 0.676142 | 0.687348 |
| 61.67  | 13.87  | 37    | 0.741153 | 0.741153 | 0.741153 | 0.741153 | 0.741153               | 0.741153     | 0.743053 | 0.744898 | 0.760309 | 0.770029 |
| 65.00  | 14.40  | 39    | 0.82314  | 0.82314  | 0.82314  | 0.82314  | 0.82314                | 0.82314      | 0.827088 | 0.842855 | 0.857134 | 0.87362  |
| 68.33  | 14.93  | 41    | 0.92638  | 0.92638  | 0.92638  | 0.92638  | 0.92638                | 0.92638      | 0.92638  | 0.92638  | 0.948472 | 0.96654  |
| 71.67  | 15.47  | 43    | 1.043737 | 1.043737 | 1.043737 | 1.043737 | 1.043737               | 1.043737     | 1.043737 | 1.043737 | 1.043737 | 1.062126 |
| 75.00  | 16.00  | 45    | 1.142775 | 1.142775 | 1.142775 | 1.142775 | 1.142775               | 1.142775     | 1.142775 | 1.142775 | 1.142775 | 1.166762 |
| 78.33  | 16.53  | 47    | 1.261553 | 1.261553 | 1.261553 | 1.261553 | 1.261553               | 1.261553     | 1.261553 | 1.261553 | 1.261553 | 1.261553 |
| 81.67  | 17.07  | 49    | 1.380397 | 1.380397 | 1.380397 | 1.380397 | 1.380397               | 1.380397     | 1.380397 | 1.380397 | 1.380397 | 1.380397 |
| 85.00  | 17.60  | 51    | 1.478962 | 1.478962 | 1.478962 | 1.478962 | 1.478962               | 1.478962     | 1.478962 | 1.478962 | 1.478962 | 1.478962 |
| 88.33  | 18.13  | 53    | 1.617188 | 1.617188 | 1.617188 | 1.617188 | 1.617188               | 1.617188     | 1.617188 | 1.617188 | 1.617188 | 1.617188 |
| 91.67  | 18.67  | 55    | 1.717185 | 1.717185 | 1.717185 | 1.717185 | 1.717185               | 1.717185     | 1.717185 | 1.717185 | 1.717185 | 1.717185 |
| 95.00  | 19.20  | 57    | 1.883471 | 1.883471 | 1.883471 | 1.883471 | 1.883471               | 1.883471     | 1.883471 | 1.883471 | 1.883471 | 1.883471 |
| 98.33  | 19.73  | 59    | 1.983762 | 1.983762 | 1.983762 | 1.983762 | 1.983762               | 1.983762     | 1.983762 | 1.983762 | 1.983762 | 1.983762 |

Valve angle = Resolver Feedback Angle – Resolve Offset Angle Resolver Offset Angle =  $\sim$ 20 degrees 4 mA = 0° valve angle = 0 % valve position =  $\sim$ 20 resolver angle min stop = -2 degrees valve angle max stop = 62 degrees valve angle

Manual 26734

### Table 6-3. 3103 2.0 in<sup>2</sup> port, Effective Area

Released

## Chapter 7. Maintenance

There are no critical maintenance items in the 3103/EM35MR gas valve assemblies, such as filters that should be changed, etc. Visually inspect the valve assembly in accordance with your specific maintenance schedule. Each site must determine the appropriate schedule based on the severity of the service conditions. Valve maintenance frequency should increase if the turbine is operated under a low duty cycle, where the valve is required to be in a standby mode for extended periods of time. Inspect for dirt, grease, dust, or other buildup in the areas of moving parts or joints. Clean environmentally originated buildup from the unit; if cleaning solution is used, verify that it is compatible with the Viton and Teflon valve seal materials. If any buildup appears to have originated from within the valve, return the valve to Woodward for service (see Chapter 8).

## Chapter 8. Product Support and Service Options

## **Product Support Options**

If you are experiencing problems with the installation, or unsatisfactory performance of a Woodward product, the following options are available:

- Consult the troubleshooting guide in the manual.
- Contact the manufacturer or packager of your system.
- Contact the Woodward Full Service Distributor serving your area.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In many cases, your problem can be resolved over the phone. If not, you can select which course of action to pursue based on the available services listed in this chapter.

**OEM or Packager Support:** Many Woodward controls and control devices are installed into the equipment system and programmed by an Original Equipment Manufacturer (OEM) or Equipment Packager at their factory. In some cases, the programming is password-protected by the OEM or packager, and they are the best source for product service and support. Warranty service for Woodward products shipped with an equipment system should also be handled through the OEM or Packager. Please review your equipment system documentation for details.

**Woodward Business Partner Support:** Woodward works with and supports a global network of independent business partners whose mission is to serve the users of Woodward controls, as described here:

- A **Full Service Distributor** has the primary responsibility for sales, service, system integration solutions, technical desk support, and aftermarket marketing of standard Woodward products within a specific geographic area and market segment.
- An **Authorized Independent Service Facility (AISF)** provides authorized service that includes repairs, repair parts, and warranty service on Woodward's behalf. Service (not new unit sales) is an AISF's primary mission.

A current list of Woodward Business Partners is available at: https://www.woodward.com/en/support/industrial/service-and-spare-parts/find-a-local-partner

## **Product Service Options**

The following factory options for servicing Woodward products are available through your local Full-Service Distributor or the OEM or Packager of the equipment system, based on the standard Woodward Product and Service Warranty (5-09-0690) that is in effect at the time the product is originally shipped from Woodward or a service is performed:

- Replacement/Exchange (24-hour service)
- Flat Rate Repair
- Flat Rate Remanufacture

#### Manual 26734

**Replacement/Exchange:** Replacement/Exchange is a premium program designed for the user who is in need of immediate service. It allows you to request and receive a like-new replacement unit in minimum time (usually within 24 hours of the request), providing a suitable unit is available at the time of the request, thereby minimizing costly downtime. This is a flat-rate program and includes the full standard Woodward product warranty (Woodward Product and Service Warranty 5-09-0690).

This option allows you to call your Full-Service Distributor in the event of an unexpected outage, or in advance of a scheduled outage, to request a replacement control unit. If the unit is available at the time of the call, it can usually be shipped out within 24 hours. You replace your field control unit with the like-new replacement and return the field unit to the Full-Service Distributor.

Charges for the Replacement/Exchange service are based on a flat rate plus shipping expenses. You are invoiced the flat rate replacement/exchange charge plus a core charge at the time the replacement unit is shipped. If the core (field unit) is returned within 60 days, a credit for the core charge will be issued.

**Flat Rate Repair:** Flat Rate Repair is available for the majority of standard products in the field. This program offers you repair service for your products with the advantage of knowing in advance what the cost will be. All repair work carries the standard Woodward service warranty (Woodward Product and Service Warranty 5-09-0690) on replaced parts and labor.

**Flat Rate Remanufacture:** Flat Rate Remanufacture is very similar to the Flat Rate Repair option with the exception that the unit will be returned to you in "like-new" condition and carry with it the full standard Woodward product warranty (Woodward Product and Service Warranty 5-09-0690). This option is applicable to mechanical products only.

### **Returning Equipment for Repair**

If a control (or any part of an electronic control) is to be returned for repair, please contact your Full-Service Distributor in advance to obtain Return Authorization and shipping instructions.

When shipping the item(s), attach a tag with the following information:

- Return authorization number
- Name and location where the control is installed
- Name and phone number of contact person
- Complete Woodward part number(s) and serial number(s)
- Description of the problem
- Instructions describing the desired type of repair

#### Packing a Control

Use the following materials when returning a complete control:

- Protective caps on any connectors
- Antistatic protective bags on all electronic modules
- Packing materials that will not damage the surface of the unit
- At least 100 mm (4 inches) of tightly packed, industry-approved packing material
- A packing carton with double walls
- A strong tape around the outside of the carton for increased strength



To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.* 

### **Replacement Parts**

When ordering replacement parts for controls, include the following information:

- The part number(s) (XXXX-XXXX) that is on the enclosure nameplate
- The unit serial number, which is also on the nameplate

### **Engineering Services**

Woodward offers various Engineering Services for our products. For these services, you can contact us by telephone, by email, or through the Woodward website.

- Technical Support
- Product Training
- Field Service

**Technical Support** is available from your equipment system supplier, your local Full-Service Distributor, or from many of Woodward's worldwide locations, depending upon the product and application. This service can assist you with technical questions or problem solving during the normal business hours of the Woodward location you contact. Emergency assistance is also available during non-business hours by phoning Woodward and stating the urgency of your problem.

**Product Training** is available as standard classes at many of our worldwide locations. We also offer customized classes, which can be tailored to your needs and can be held at one of our locations or at your site. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability.

**Field Service** engineering on-site support is available, depending on the product and location, from many of our worldwide locations or from one of our Full-Service Distributors. The field engineers are experienced both on Woodward products as well as on much of the non-Woodward equipment with which our products interface.

For information on these services, please contact one of the Full-Service Distributors listed at <u>www.woodward.com/local-partner.</u>

## **Contacting Woodward's Support Organization**

For the name of your nearest Woodward Full-Service Distributor or service facility, please consult our worldwide directory at <u>https://www.woodward.com/support</u>, which also contains the most current product support and contact information.

You can also contact the Woodward Customer Service Department at one of the following Woodward facilities to obtain the address and phone number of the nearest facility at which you can obtain information and service.

| Products Used in<br>Electrical Power Systems | Products Used in<br>Engine Systems | Products Used in Industrial<br>Turbomachinery Systems |
|----------------------------------------------|------------------------------------|-------------------------------------------------------|
| FacilityPhone Number                         | FacilityPhone Number               | FacilityPhone Number                                  |
| Brazil+55 (19) 3708 4800                     | Brazil +55 (19) 3708 4800          | Brazil +55 (19) 3708 4800                             |
| China +86 (512) 8818 5515                    | China +86 (512) 8818 5515          | China +86 (512) 8818 5515                             |
| Germany:+49 (711) 78954-510                  | Germany +49 (711) 78954-510        | India+91 (124) 4399500                                |
| India+91 (124) 4399500                       | India+91 (124) 4399500             | Japan+81 (43) 213-2191                                |
| Japan+81 (43) 213-2191                       | Japan+81 (43) 213-2191             | Korea+ 82 (32) 422-5551                               |
| Korea+82 (32) 422-5551                       | Korea+ 82 (32) 422-5551            | The Netherlands+31 (23) 5661111                       |
| Poland+48 (12) 295 13 00                     | The Netherlands+31 (23) 5661111    | Poland+48 (12) 295 13 00                              |
| United States+1 (970) 482-5811               | United States+1 (970) 482-5811     | United States+1 (970) 482-5811                        |

## **Technical Assistance**

If you need to contact technical assistance, you will need to provide the following information. Please write it down here before contacting the Engine OEM, the Packager, a Woodward Business Partner, or the Woodward factory:

| General                                      |  |
|----------------------------------------------|--|
| Your Name                                    |  |
| Site Location                                |  |
| Phone Number                                 |  |
| Fax Number                                   |  |
| Prime Mover Information                      |  |
| Manufacturer                                 |  |
| Turbine Model Number                         |  |
| Type of Fuel (gas, steam, etc.)              |  |
| Power Output Rating                          |  |
| Application (power generation, marine, etc.) |  |
| <b>Control/Governor Information</b>          |  |
| Control/Governor #1                          |  |
| Woodward Part Number & Rev. Letter           |  |
| Control Description or Governor Type         |  |
| Serial Number                                |  |
| Control/Governor #2                          |  |
| Woodward Part Number & Rev. Letter           |  |
| Control Description or Governor Type         |  |
| Serial Number                                |  |
| Control/Governor #3                          |  |
| Woodward Part Number & Rev. Letter           |  |
| Control Description or Governor Type         |  |
| Serial Number                                |  |
| Symptoms                                     |  |
| Description                                  |  |

If you have an electronic or programmable control, please have the adjustment setting positions or the menu settings written down and with you at the time of the call.

## **3103/EM35MR Specifications**

The EM35MR electric actuator was designed for the positioning of Woodward gas and liquid valves equipped with resolver feedback. The actuator requires a final driver for driving the motor and for closed loop control.

The EM35MR actuator uses a brushless dc motor with a reducing planetary gearhead. The motor is designed with Samarium Cobalt permanent magnets bonded to the rotor element and all stator windings are completely sealed. The field director unit integral performs rotor position sensing with the motor. This inductive device requires excitation and demodulation within the electronic motor controller.

| Mechanical                     |                                                                       |
|--------------------------------|-----------------------------------------------------------------------|
| Output Shaft Rotation:         | 60° (Rotation limited by valve stops)                                 |
| Actuator/Valve Coupling:       | Direct Coupling                                                       |
| Torque Constant:               | 1.8 N·m/A (16 lb-in/A)                                                |
| Continuous Output Torque:      | ±25 N⋅m (±220 lb-in) maximum                                          |
| Peak Output Torque:            | ±62 N·m (±552 lb-in) minimum                                          |
| Clutch Breakaway Torque:       | ±68 N⋅m (±600 lb-in)                                                  |
| Valve Gas Connection:          | 2 inch 600# ANSI B16.5 (50 mm, 2669 N)                                |
| Gas Flow:                      | (23 to 18 144) kg/h / (50 to 40 000) lb/h natural gas                 |
| Gas Pressure/Standard 3103:    | (0 to 6205) kPa absolute / (0 to 900) psia (CSA)                      |
|                                | (0 to 4964) kPa absolute / (0 to 720) psia (CSA and CE)               |
| Gas Pressure/Enhanced 3103:    | (0 to 6205) kPa gauge / (0 to 900) psig (CSA and CE)                  |
| Gas Filtration:                | 25 µm absolute at 75 beta requirements                                |
|                                | Solid particulates                                                    |
| Gas Contaminants:              | < 10 µm diameter 30 ppm by volume maximum                             |
|                                | > 10 µm diameter 0.3 ppm by volume maximum                            |
|                                | Non-DLE: 172 kPa (25 psid)                                            |
| Minimum Pressure Differential: | DLE: 345 kPa (50 psid)                                                |
|                                |                                                                       |
| Electrical                     |                                                                       |
| Power Input:                   | 28 V (dc) nominal, (18 to 32) V (dc) operating, 15 A continuous, 37 A |
|                                | peak for 50 ms                                                        |
|                                |                                                                       |
| Performance                    |                                                                       |
|                                | 150 ms open, 80 ms close at 28 V and room temperature (100 ms         |
| Slew Time (50 deg):            | close for 137:1 gear ratio) where slew time = valve travel ÷ max slew |
|                                | rate                                                                  |
| Bandwidth:                     |                                                                       |
| Position Accuracy:             | ±0.50° analog, ±6 arc min RSS (root sum squared) digital              |
|                                |                                                                       |

# IMPORTANT

Flow metering accuracy and performance are not guaranteed above 4964 kPa (720 psia) maximum.

| Environmental        |                                                                                        |
|----------------------|----------------------------------------------------------------------------------------|
| Ambient Temperature: | (–40 to +93) °C / (–40 to +200) °F                                                     |
| Fuel Temperature:    | (–40 to +149) °C / (–40 to +300) °F                                                    |
|                      |                                                                                        |
| Vibration:           | US MIL-STD-810C Method 514.2, Category b.1, Table 514.2-II, Figure 514.2 curve j (5 G) |
| Shock:               | US MIL-STD-810C, Method 516.2, Figure 516.2-1, 20 G 11 ms sawtooth                     |



## **Revision History**

#### Changes in Revision J—

- Removed CE line under Pressure Equipment Directive (Valve)
- Updated EU DoC 00182-04-EU-02-02

#### Changes in Revision H—

• Replaced all declarations

#### Changes in Revision G-

Replaced a DoC

#### Changes in Revision F—

- Added a new paragraph and a WARNING signal word box at the end of the Regulatory Compliance section.
- Replaced a DoC and a Dol

#### Changes in Revision E—

- Revised the PED (Valve), ATEX Directive (Actuator & Resolver), and ATEX (Valve) Directive in the Regulatory Compliance section
- Added the RoHS Directive to the Regulatory Compliance section
- Replaced all declarations

#### Changes in Revision D—

• New solution added to the position error problem in the troubleshooting table in Chapter 5

#### Changes in Revision C—

• Updated Regulatory Compliance and Declarations sections

#### Changes in Revision B—

Updated Regulatory Compliance and Declarations sections

## **Declarations**

#### DECLARATION OF INCORPORATION Of Partly Completed Machinery 2006/42/EC

| File name:<br>Manufacturer's Name:                                                                   | 00111-04-CE-02-01<br>WOODWARD INC.              |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Manufacturer's Address:                                                                              | 1041 Woodward Way<br>Fort Collins, CO 80524 USA |
| Model Names:                                                                                         | EM35MR1 Actuator                                |
| This product complies, where<br>applicable, with the following<br>Essential Requirements of Annex I: | 1.1, 1.3, 1.4, 1.5, 1.6, 1.7                    |

The relevant technical documentation is compiled in accordance with part B of Annex VII. Woodward shall transmit relevant information if required by a reasoned request by the national authorities. The method of transmittal shall be agreed upon by the applicable parties.

The person authorized to compile the technical documentation:

Name: Dominik Kania, Managing Director Address: Woodward Poland Sp. z o.o., ul. Skarbowa 32, 32-005 Niepolomice, Poland

This product must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of this Directive, where appropriate.

The undersigned hereby declares, on behalf of Woodward Inc. of Loveland and Fort Collins, Colorado that the above referenced product is in conformity with Directive 2006/42/EC as partly completed machinery:

#### MANUFACTURER

|           | anatte Lynch                         |
|-----------|--------------------------------------|
| Signature | 0                                    |
|           | Annette Lynch                        |
| Full Name | -                                    |
|           | Engineering Manager                  |
| Position  |                                      |
|           | Woodward Inc., Fort Collins, CO, USA |
| Place     |                                      |
|           | 06/15/2022                           |
| Det       |                                      |

Date

Document: 5-09-1182 (rev. 21)

PAGE 1 of 1

| EU DECLARATION OF CONFORMITY                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EU DoC No.:<br>Manufacturer's Name:                                                                                               | 00111-04-CE-02-02<br>WOODWARD INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Manufacturer's Contact Address:                                                                                                   | 1041 Woodward Way<br>Fort Collins, CO 80524 USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model Name(s)/Number(s):                                                                                                          | EM35MR1 Actuators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The object of the declaration described<br>above is in conformity with the following<br>relevant Union harmonization legislation: | Directive 2014/34/EU of the European Parliament and of the Council of<br>26 February 2014 on the harmonization of the laws of the Member States relating<br>to equipment and protective systems intended for use in potentially explosive<br>atmospheres                                                                                                                                                                                                                                                                                                                                             |
| Markings in addition to CE marking:                                                                                               | (a) II 2 G, Ex db IIB T3 Gb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Applicable Standards ATEX:                                                                                                        | EN IEC 60079-0:2018 Electrical apparatus for potentially explosive atmospheres -<br>General Requirements<br>(A review against EN IEC 60079-0:2018, which is harmonized, shows no<br>significant changes relevant to this equipment so EN 60079-0:2012 continues to<br>represent "State of the Art")<br>EN 60079-1:2014 Electrical apparatus for potentially explosive atmospheres -<br>Flameproof enclosure 'd'<br>(A review against EN60079-1:2014, which is harmonized, shows no significant<br>changes relevant to this equipment so EN60079-1:2007 continues to represent<br>"State of the Art") |
| Third Party Certification:                                                                                                        | Sira 13ATEX1188X<br>CSA Group Netherlands B.V.<br>Ultrechseweg 310, 6812 AR, Arnhem, Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conformity Assessment:                                                                                                            | ATEX Annex IV - Production Quality Assessment, 01 220 113542<br>TUV Rheinland Industrie Service GmbH (0035)<br>Am Grauen Stein, D51105 Cologne                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

This declaration of conformity is issued under the sole responsibility of the manufacturer We, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s).

| MAN | UFA | CTU | RER |
|-----|-----|-----|-----|
|     |     |     |     |

anote Lynch

Signature

Annette Lynch

Full Name

Engineering Manager

Position

Woodward, Fort Collins, CO, USA

Place

June 15, 2022

Date

5-09-1183 Rev 37

Page 1 of 1

#### DECLARATION OF INCORPORATION Of Partly Completed Machinery 2006/42/EC

 File name:
 00182-04-EU-02-01

 Manufacturer's Name:
 WOODWARD INC.

 Manufacturer's Address:
 1041 Woodward Way Fort Collins, CO 80524 USA

 Model Names:
 3103 Gas Valve; including enhanced version

 This product complies, where applicable, with the following
 1.1, 1.2, 1.3, 1.5, 1.6, 1.7

The relevant technical documentation is compiled in accordance with part B of Annex VII. Woodward shall transmit relevant information if required by a reasoned request by the national authorities. The method of transmittal shall be agreed upon by the applicable parties.

The person authorized to compile the technical documentation:

 Name:
 Dominik Kania, Managing Director

 Address:
 Woodward Poland Sp. z o.o., ul. Skarbowa 32, 32-005 Niepolomice, Poland

This product must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of this Directive, where appropriate.

The undersigned hereby declares, on behalf of Woodward Inc. of Loveland and Fort Collins, Colorado that the above referenced product is in conformity with Directive 2006/42/EC as partly completed machinery:

#### MANUFACTURER

|           | (innette Lynch                       |
|-----------|--------------------------------------|
| Signature | 0                                    |
|           | Annette Lynch                        |
| Full Name | •                                    |
|           | Engineering Manager                  |
| Position  |                                      |
|           | Woodward Inc., Fort Collins, CO, USA |
| Place     |                                      |
|           | 06/15/2022                           |
| Date      |                                      |

Document: 5-09-1182 (rev. 21)

PAGE 1 of 1

#### Manual 26734

| EU DE                                                                                                                             | EU DECLARATION OF CONFORMITY                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EU DoC No.:<br>Manufacturer's Name:                                                                                               | 00182-04-EU-02-02<br>WOODWARD INC.                                                                                                                                                                                            |  |
| Manufacturer's Contact Address:                                                                                                   | 1041 Woodward Way<br>Fort Collins, CO 80524 USA                                                                                                                                                                               |  |
| Model Name(s)/Number(s):                                                                                                          | 3103 Gas Valve; including enhanced version                                                                                                                                                                                    |  |
| The object of the declaration described<br>above is in conformity with the following<br>relevant Union harmonization legislation: | Directive 2014/68/EU of the European Parliament and of the Council of 15 May 2014 on the harmonization of the laws of the Member States relating to the making available on the market of pressure equipment PED Category II, |  |
| Applicable Standards:<br>PED:                                                                                                     | ASME Boiler and Pressure Vessel Code VIII, Div. 2, 2012                                                                                                                                                                       |  |
| Conformity Assessment:                                                                                                            | PED Module H – Full Quality Assurance<br>CE-0062-PED-H-WDI 001-22-USA Bureau Veritas SAS (0062)<br>Tour ALTO, 4 Place des Saisons, 92400 COURBEVOIE, FRANCE                                                                   |  |
| Signature<br>Full Name<br>Position                                                                                                | MANUFACTURER<br><u>Junith Junit</u><br><u>Annette Lynch</u><br><u>Engineering Manager</u><br><u>odward, Fort Collins, CO, USA</u><br><u>25 August</u> 2023                                                                    |  |
| 5-09-1183 Rev 37                                                                                                                  | Page 1 of 1                                                                                                                                                                                                                   |  |

45

#### DECLARATION OF INCORPORATION Of Partly Completed Machinery 2006/42/EC

| File name:<br>Manufacturer's Name:                                                                   | 00144-04-CE-02-01<br>WOODWARD INC.              |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Manufacturer's Address:                                                                              | 1041 Woodward Way<br>Fort Collins, CO 80524 USA |
| Model Names:                                                                                         | EM/TM Resolver                                  |
| This product complies, where<br>applicable, with the following<br>Essential Requirements of Annex I: | 1.1, 1.3, 1.4, 1.5, 1.6, 1.7                    |

The relevant technical documentation is compiled in accordance with part B of Annex VII. Woodward shall transmit relevant information if required by a reasoned request by the national authorities. The method of transmittal shall be agreed upon by the applicable parties.

The person authorized to compile the technical documentation:

Name: Dominik Kania, Managing Director Address: Woodward Poland Sp. z o.o., ul. Skarbowa 32, 32-005 Niepolomice, Poland

This product must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of this Directive, where appropriate.

The undersigned hereby declares, on behalf of Woodward Inc. of Loveland and Fort Collins, Colorado that the above referenced product is in conformity with Directive 2006/42/EC as partly completed machinery:

#### MANUFACTURER

|           | aninette Amily                       |
|-----------|--------------------------------------|
| Signature | 0                                    |
|           | Annette Lynch                        |
| Full Name | •                                    |
|           | Engineering Manager                  |
| Position  |                                      |
|           | Woodward Inc., Fort Collins, CO, USA |
| Place     |                                      |
|           | 06/15/2022                           |
| Data      |                                      |

Date

Document: 5-09-1182 (rev. 21)

PAGE 1 of 1

| EU DECLARATION OF CONFORMITY                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EU DoC No.:<br>Manufacturer's Name:                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Manufacturer's Contact Address:                                                                                                   | 1041 Woodward Way<br>Fort Collins, CO 80524 USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Model Name(s)/Number(s):                                                                                                          | EM/TM Resolver 9907-106, 9907-965 thru 9907-970, 9907-2332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| The object of the declaration described<br>above is in conformity with the following<br>relevant Union harmonization legislation: | Directive 2014/34/EU of the European Parliament and of the Council of 26 February 2014 on the harmonization of the laws of the Member States relating to equipment and protective systems intended for use in potentially explosive atmospheres                                                                                                                                                                                                                                                                                                                                                      |  |
| Markings in addition to CE marking:                                                                                               | ⟨a⟩ II 2 G, Ex db IIB T3 Gb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Applicable Standards:<br>ATEX:                                                                                                    | EN IEC 60079-0:2018 Electrical apparatus for potentially explosive atmospheres<br>- General Requirements<br>(A review against EN IEC 60079-0:2018, which is harmonized, shows no<br>significant changes relevant to this equipment so EN 60079-0:2012 continues to<br>represent "State of the Art")<br>EN 60079-1:2014 Electrical apparatus for potentially explosive atmospheres -<br>Flameproof enclosure 'd'<br>(A review against EN60079-1:2014, which is harmonized, shows no significant<br>changes relevant to this equipment so EN60079-1:2007 continues to represent<br>"State of the Art") |  |
| Third Party Certification:                                                                                                        | Sira 13ATEX1188X<br>CSA Group Netherlands B.V.<br>Ultrechseweg 310, 6812 AR, Amhem, Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Conformity Assessment:                                                                                                            | ATEX Annex IV - Production Quality Assessment, 01 220 113542<br>TUV Rheinland Industrie Service GmbH (0035)<br>Am Grauen Stein, D51105 Cologne                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

This declaration of conformity is issued under the sole responsibility of the manufacturer We, the undersigned, hereby declare that the equipment specified above conforms to the above Directive(s).

| MANUFACTURE | R |
|-------------|---|
|-------------|---|

anothe chymich

Signature

Annette Lynch

Full Name

Engineering Manager

Position

Woodward, Fort Collins, CO, USA

Place

06/15/2022

Date

5-09-1183 Rev 37

Page 1 of 1

## This Page Intentionally Left Blank

## This Page Intentionally Left Blank



We appreciate your comments about the content of our publications. Send comments to: <u>industrial.support@woodward.com</u>

Please reference publication 26734.





PO Box 1519, Fort Collins CO 80522-1519, USA 1041 Woodward Way, Fort Collins CO 80524, USA Phone +1 (970) 482-5811

Email and Website-www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.