WOODWARD

MotoHawk Control Solutions

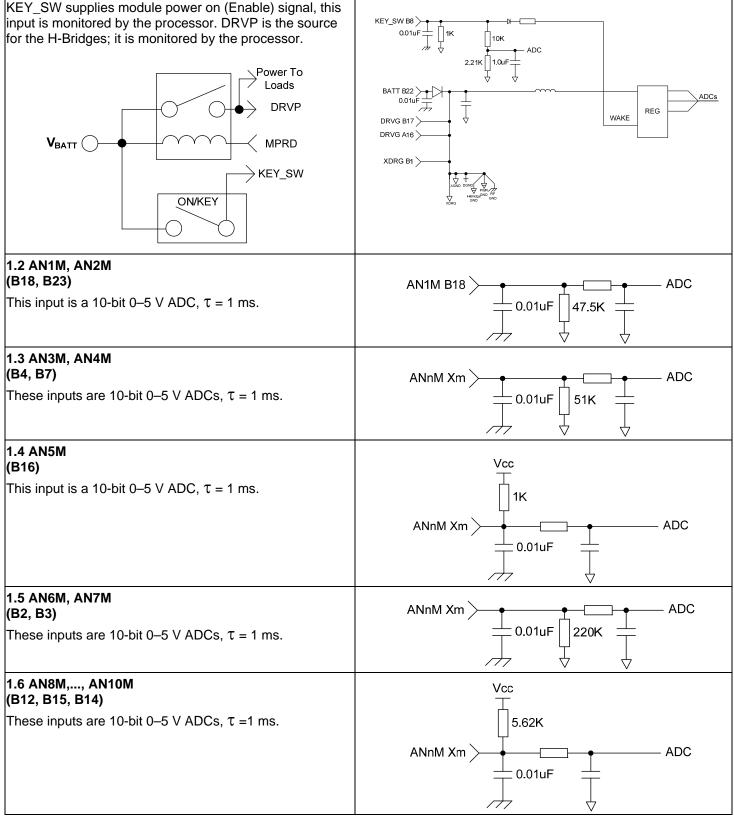
ECM-0563-048-0704-C/F Engine Control Modules

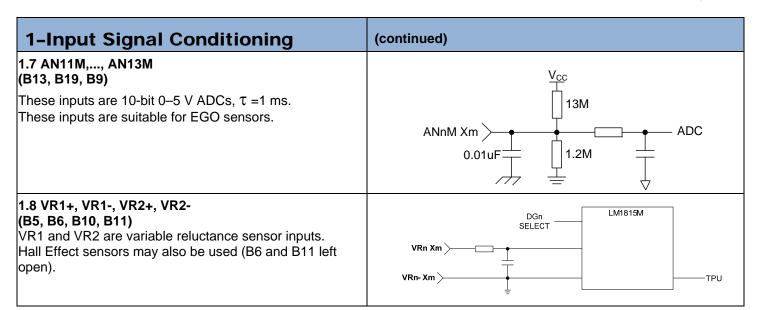
(Part Nos. 1751-6527 / 1751-6410)

Description

Presenting the ECM-0563-048-0704-C/F engine control modules from Woodward's new MotoHawk Control Solutions product line. These rugged embedded controllers are capable of operating in harsh automotive, marine, and off-highway applications. Over 300,000 successful marine applications prove the capability of this module. Based on a proven microprocessor, the ECM-0563-048-0704-C/F modules are capable of delivering complex control strategies. The onboard floating point unit and the high clock frequency allow software to be developed in shorter times. Dual CAN 2.0B datalinks ensure interoperability with other system components.

The ECM-0563-048-0704-C/F modules are part of the ControlCore[®] family of embedded control systems. MotoHawk Control Solutions' ControlCore operating system, MotoHawk[®] code-generation product, and MotoHawk's suite of development tools enable rapid development of complex control systems.

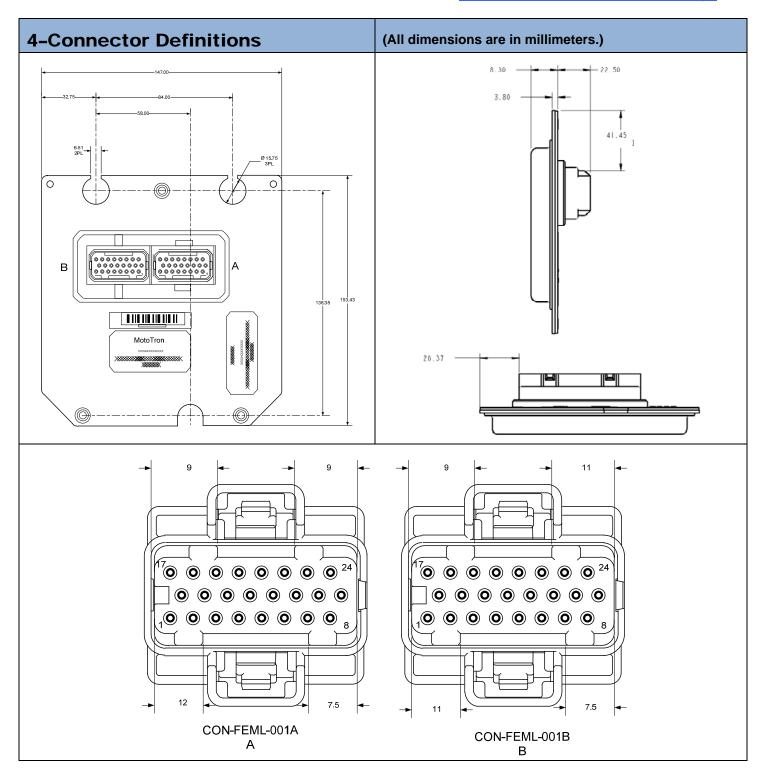

IMPORTANT Woodward does not warranty these ECMs based on information supplied in this datasheet, but only with an express and specific production supply agreement based on customer's operating mode. Information in this datasheet is subject to change without prior notice. Please contact MotoHawk Control Solutions sales for more information.


- Microprocessor: Freescale MPC563, 56 MHz
- Memory: 512K Flash, 32K RAM (24K+4K overlayable), 128K parallel EEPROM (ECM-0563-048-0704-C)
- Operating Voltage: 8–16 Vdc
- Operating Temperature: -40 to +105 °C
- Sealed connectors operable to 10 ft (3 m) submerged
- Inputs: 13 Analog 2 VR/Hall Frequency
 - Outputs: 4x Low Side Injector Drivers
 - 8x TTL Level Ignition System
 - 7x High Current Low Side PWM
 - 1x 5 A H-Bridge PWM with Current Feedback Independent
 - Transducer Power Supply 1x Low Side Relay
 - Driver (Main Power)
 - Datalinks: 1 CAN 2.0B Channel

1-Input Signal Conditioning

1.1 BATT (B22), KEY_SW (B8), GND (A16, B17), XDRG (B1), DRVP (A23)

KEY_SW supplies module power on (Enable) signal, this

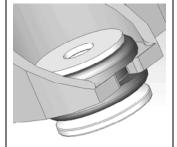


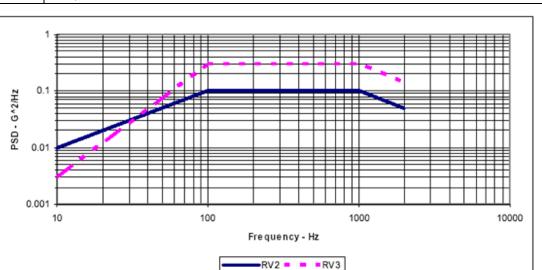
2-Output Signal Conditioning	
2.1 XDRP (B24) XDRP is the transducer power source. It is monitored by the processor.	V_{UNREG} $TLE4251$ $VURP B24$ $5V,$ $300mA$
2.2 LSO/INJ1,, LSO/INJ4 (A5, A8, A4, A7) These outputs are high current sink drivers, 3 A max. Short circuit protection, open circuit and short circuit detection.	LSO/INJn
2.3 LSO5, LSO6, LSO8, LSO9 (A13, A14, A11, A24) These outputs are high current sink drivers, 6 A max. Short circuit protection, open circuit and short circuit detection.	ESOn XN
2.4 LSO10, LSO11 (A2, A1) These outputs are high current sink drivers, 6 A max. Short-circuit protection, open-circuit and short-circuit detection, with recirc diode.	DVRP LSOn XN

2-Output Signal Conditioning	(continued)
2.5 LSO7/TACH/LINK (A20) This output is capable of sinking 1.5 A max. It may also be used as a Tachometer output or a Serial Data Link. Short circuit protection, open circuit and short circuit detection.	
2.6 MPRD (A22) This output energizes the Main Power Relay. Short circuit protection, open circuit and short circuit detection.	MPRD A22
2.7 HB1A, HB1B (A17, A18) This is a 12 volt H-bridge output. 5 A cont., 6 A peak, with current feedback.	$\begin{array}{c} DRVP \\ T \\ PWM & \xrightarrow{MC33887} \\ PWM & \xrightarrow{SA \ Cont.} \\ 6A \ Pk. \\ ADC & \xrightarrow{FWM} \\ \end{array}$
2.8 EST1,, EST8 (A9, A10, A3, A6, A19, A21, A12, A15) These are TTL level outputs. May be used as an analog input with a 130K pull up when not used for spark.	5 V 130K TPU PORT PORT EST_CTRL DIAG (see notes) < EST_CTRL

3-Communications	
3.1 CAN1+, CAN1- (B20, B21)	CAN 2.0B, Standard or Extended ID, up to 1 MBd.
3.2 LINK (A20) (See 2.5)	EasyLink Gauge Interface

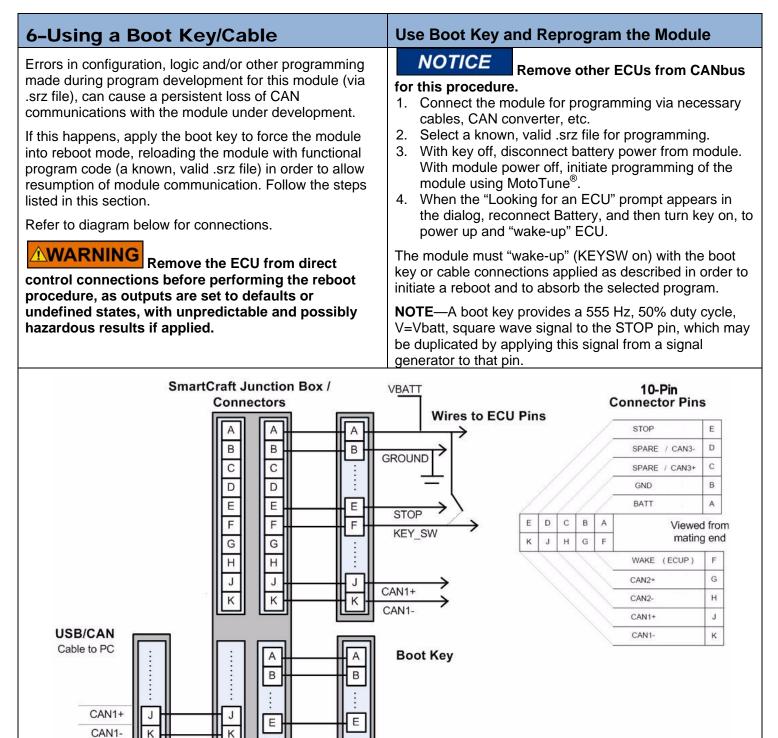
4.1 Block Diagram	ECM-0563-048-0704-C/F
B22 ECI	M-0563-048-0704
BZZ BATT B8 KEY_SI	77
	MPRD A22
B6	DRVP A23
B10	2+ (CAM)
B11 _{VR_DG} . B24 _{XDRP}	2A5
B1 XDRP	LSO/INJ-2
B18	47K5 GND) LSO/INJ-3 A4 A7
B23	47K5 GND) LSO5
דס	LSO6 A14
$- \frac{B7}{B16} AN4 (1)$	51K GND) LSO7/TACH_LINK A20
	LSO8 A11
B3AN7 (1	LSO9 220K GND)
	5K62 5V)
B15 AN9 (1)	5K62 5V) A18
B14 B13 B13	(SK02 SV) LSO11 A1
B19	1.2M PD/13M PU5) LSO10 A2 1.2M PD/13M PU5) ^{W/RECIRC}
DO	1.2M PD/13M PU5) (5V) EST1 A9
	(5V) EST2 A10
	(5V) EST3 A3
	(5V) EST4
	(5V) EST5 A19 (5V) EST6 A21
	(5V) EST7 A12
	(5V) EST8 A15
B20	
B21 CAN1-	
	DVRG A16 DVRG B17
	DVRG


4.2 Connector Pinouts		4.2.1 Resource by Connector Pin P/N: HARN-XXX-NNN-D0		
Pin # ECM	ControlCore Resource Name	Function Name	Notes	Wire Number Color Code
A1	LSO11	Low Side Output w/recirc.	6 A	1 Pink/Light Blue
A2	LSO10	Low Side Output w/recirc.	6 A	2 Pink/Orange
A3	EST3	Electronic Spark Timing/Analog Input	TTL Level	3 Yellow/Black
A4	LSO3/INJ3	Low Side Injector Output	3 A	4 White
A5	LSO1/INJ1	Low Side Injector Output	3 A	5 White/ Dark Blue
A6	EST4	Electronic Spark Timing/Analog Input	TTL Level	6 Black/Red
A7	LSO4/INJ4	Low Side Injector Output	3 A	7 Yellow/Orange
A8	LSO2/INJ2	Low Side Injector Output	3 A	8 Light Blue
A9	EST1/AN14M	Electronic Spark Timing/Analog Input TTL Level		9 Tan/Light Blue
A10	EST2/AN15M			10 Gray
A11	LSO8	Low Side Output	6 A	11 Dark Blue
A12	EST7	Electronic Spark Timing/Analog Input	TTL Level	12 Dark Blue/White
A13	LSO5	Low Side Output	6 A	13 White/Light Blue
A14	LSO6	Low Side Output	6 A	14 White/Black
A15	EST8	Electronic Spark Timing/Analog Input	TTL Level	15 Black/Yellow
A16	DVRG	System Ground		16 Black/White
A17	HB1A	H-Bridge1	5 A	17 Pink/Purple
A18	HB1B	H-Bridge1	5 A	18 Pink/Brown
A19	EST5	Electronic Spark Timing/Analog Input	TTL Level	19 Orange
A20	LSO7/TACH/LINK	Low Side Output w/PU		20 Orange/White
A21	EST6	Electronic Spark Timing/Analog Input	TTL Level	21 Black/Blue
A22	MPRD	Relay Driver	Supplies DRVP to	22 Yellow/Purple
A23	DRVP	H-Bridge Driver Power	Module via Relay	23 Red/Blue
A24	LSO9	Low Side Output	6 A	24 Black/White


4.2 Co	nnector Pinout	ts	4.2.1 Resource by (continued)	y Connector Pin
Pin # ECM	ControlCore Resource Name	Function Name	Notes	Wire Number Color Code
B1	XDRG	Transducer Ground		25 Black/Orange
B2	AN6M	Analog Input	220K to GND	26 Tan
B3	AN7M	Analog Input	220K to GND	27 Yellow
B4	AN3M	Analog Input	51K to GND	28 Dark Blue/Pink
B5	VR1+/DG1	VR/Hall/Switch Input	1 1 1 0 1 5	29 Red/Pink
B6	VR1-	VR Sensor Return	– LM1815	30 White
B7	AN4M	Analog Input	51K to GND	31 White/Green
B8	KEY_SW	Key Switch Input		32 Brown/White
B9	AN13M	Analog Input	13M to 5 V, 1.2M to GND	33 Gray/Red
B10	VR2+/DG2	VR/Hall/Switch Input	114045	34 Orange/Black
B11	VR2-	VR Sensor Return	– LM1815	35 Blue/Black
B12	AN8M	Analog Input	5.62K to 5 V	36 White/Orange
B13	AN11M	Analog Input	13M to 5 V, 1.2M to GND	37 White/Yellow
B14	AN10M	Analog Input	5.62K to 5 V	38 Tan/Green
B15	AN9M	Analog Input	5.62K to 5 V	39 Green/Yellow
B16	AN5M	Analog Input	1K to 5 V	40 Green/Red
B17	DVRG	System Ground		41 Black/Green
B18	AN1M	Analog Input	47.5K to GND	42 Purple
B19	AN12M	Analog Input	13M to 5 V, 1.2M to GND	43 Tan/Purple
B20	CAN1+	CAN 2.0B		44 Light Blue/White
B21	CAN1-	CAN 2.0B		45 Purple/Yellow
B22	BATT	Module Battery Input		46 Black/ Orange
B23	AN2M	Analog Input	47.5K to GND	47 Green/ Black
B24	XDRP	Transducer Power	5 V, 300 mA	48 Green/Blue

5-Environmental		
5.1 General	The ECM is designed to meet automotive industry standard under-hood environmental requirements for 12 volt systems, and also meets marine industry environmental requirements. Validation tests include extreme operating temperatures (–40 to +105 °C), thermal shock, humidity, salt spray, salt fog, immersion, fluid resistance, mechanical shock, vibration, and EMC.	
	It is the responsibility of the application engineer to ensure that the application does not exceed the demonstrated capabilities of the unit; vibration or thermal. It may be necessary to perform additional tests to validate the unit in the application.	
5.2 Storage Temperature:	-40 to +125 °C	
5.3 Operating Temperature:	–40 to +105 °C	
5.4 Thermal Shock:	–40 to +125 °C air–air, 500 cycles, 6 minutes each point	
5.5 Fluid Resistance:	Lubricating oil unleaded gasoline, long-life coolant, hydraulic fluid, transmission fluid	
5.6 Humidity Resistance:	85% humidity at 85 °C for 1000 hours of operation	
5.7 Salt Fog Resistance:	500 hours, 5%, 35 °C	
5.8 Immersion:	Submersible in 8% salt water solution to 10 ft (3 m)	
5.9 Mechanical Shock:	40 g peak, 3 planes, sawtooth	
5.10 Drop:	1 m, 6 surfaces on concrete	

5.11 Vibration:


Engine mountable and tested to highperformance levels, the ECM has been successfully deployed on engines having the vibration profiles shown at right: Electrical and mechanical isolation is via a bushing, grommet, and washer, as shown:

Freq	RV2	RV3
10	0.010	0.003
100	0.100	0.300
200	0.100	0.300
300	0.100	0.300
400	0.100	0.300
500	0.100	0.300
600	0.100	0.300
700	0.100	0.300
800	0.100	0.300
900	0.100	0.300
1000	0.100	0.300
2000	0.050	0.140

5-Environmental (continued)		
5.12 Abnormal Supply Voltage	Resistance:	
Condition	Supplied Voltage	Time
Reverse Battery (main power relay installed)	-13.5 Vdc	5 minutes
Double Battery (at 23 °C)	24 Vdc	5 minutes
Minimum Battery	8 Vdc	Indef.
Low Battery Condition	6.3 Vdc	Indef.

PO Box 1519, Fort Collins CO, USA 80522-1519 1000 East Drake Road, Fort Collins CO 80525 Tel.: +1 (970) 482-5811 • Fax: +1 (970) 498-3058 mcsinfo@woodward.com • mcs.woodward.com www.woodward.com

Distributors & Service

Woodward has an international network of distributors and service facilities. For your nearest representative, call the Fort Collins plant or see the Worldwide Directory on our website.

This document is distributed for informational purposes only. It is not to be construed as creating or becoming part of any Woodward contractual or warranty obligation unless expressly stated in a written sales contract.

For more information contact: