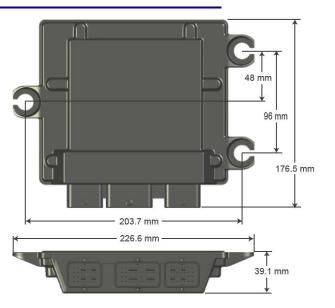
WOODWARD

MotoHawk Control Solutions

GCM-5554-112-1001-C/F General Purpose Control Modules Calibratible / Flash

(1001-C: 1751-6457) (1001-F: 1751-6456)

Description

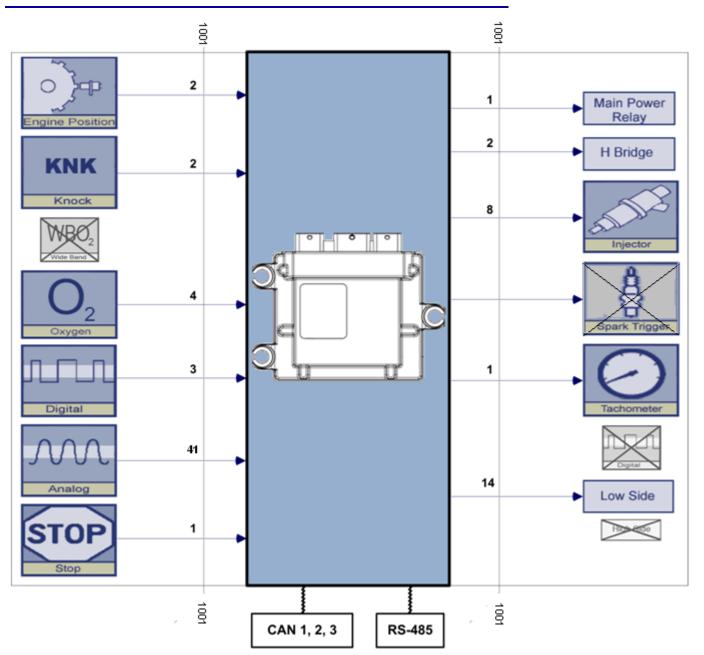

Presenting the GCM-5554-112-1001-C/F engine control modules from Woodward's MotoHawk Control Solutions product line. These rugged controllers are capable of operating in harsh automotive, marine, and off-highway applications. The module and its connector system are environmentally sealed and suitable for engine mounting in many applications.

This unit provides 112 connector pins with inputs, outputs, and communications interfaces that support a wide variety of applications.

The GCM-5554-112-1001 is part of the ControlCore[®] family of embedded control systems. The ControlCore operating system, MotoHawk[®] code generation product, and MotoHawk's suite of development tools enable rapid development of complex control systems.

Each controller is available in 'F' (Flash) or 'C' (Calibratible) versions. Flash modules are typically used for production purposes. Calibratible modules are typically for prototyping/development only; they can be calibrated in real time using MotoTune[®].

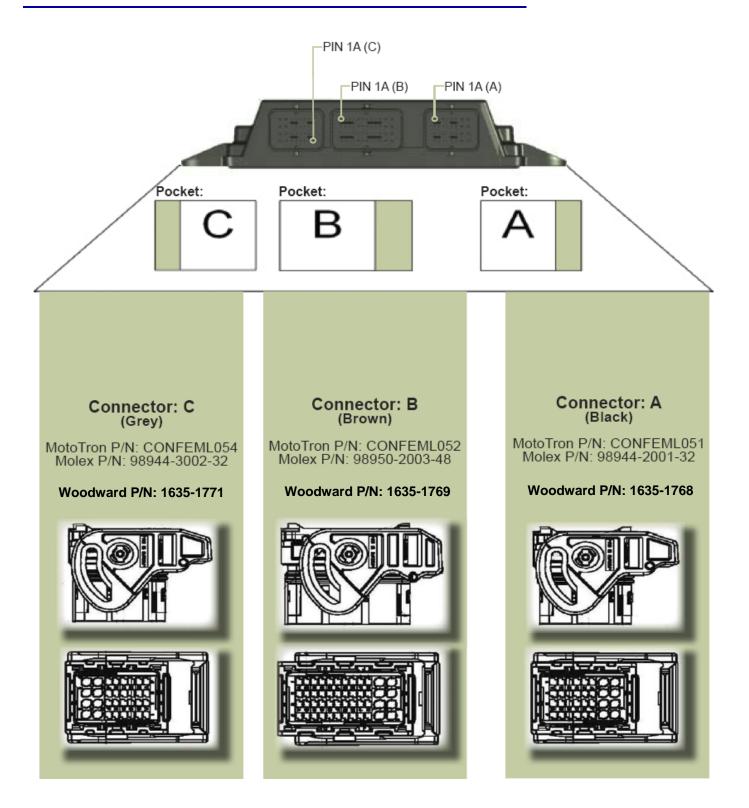
Physical Dimensions



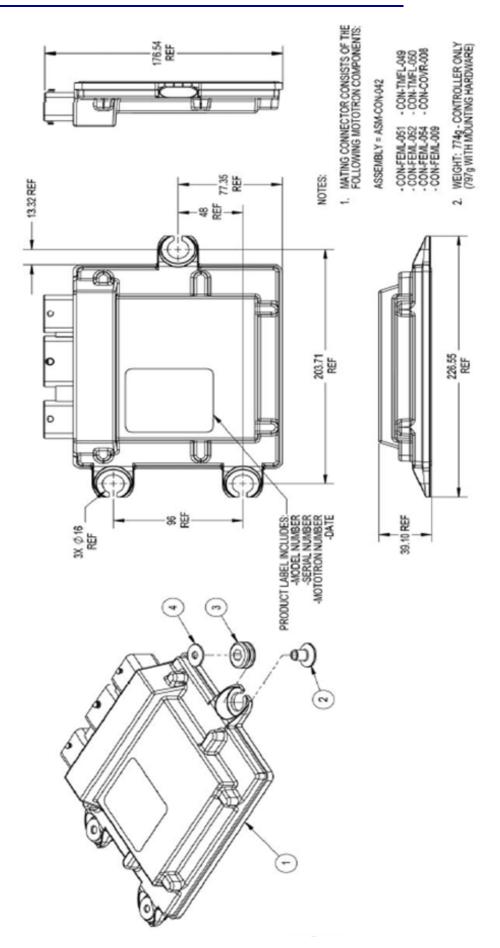
- 112-pin platform
- Microprocessor: Freescale MPC5554, 80 MHz
- Memory: 2 MB Flash, 64K RAM, + 32K Cache, 32K EEPROM
- Calibratible Memory: 512K (256K x2) RAM
- Operating Voltage: 9–16 Vdc, 24 V (jump start), 4.5 V (crank)
- Operating Temperature: -40 to +105 °C
- Inputs:
 - VR and Digital Engine Position Sensor (crank and cam) Inputs
 - 41 Analog
 - 4 Oxygen Sensor 3 Speed (digital)
 - 2 Knock Sensor
 - 1 Emergency Stop

Outputs:

- 8 Injector (high impedance)
- 1 Tachometer or Link Interface
- 14 Low Side Driver Outputs
- 1 Digital Output
- 1 Main Power Relay
- Driver Output 2 H-Bridge Outputs
- **Communications:** 3 CAN 2.0B Channels 1 RS-485 Channel


Simple Block Diagram

Ordering Information


Controller	Part No.	w/Mounting Boot Key Hardware (P/N)		Boot Cable	Desktop Simulator Harness (P/N)		
GCM55541121001CP0	1751-6457	8923-1663		N/A	5404-1205		
GCM55541121001F00	1751-6456	8923-1630	1635-1800				
CP0 suffix indicates calibratible (development) version of a module.							

Harness	Part No.
Pigtail	5404-1215
Development Harness	5404-1216

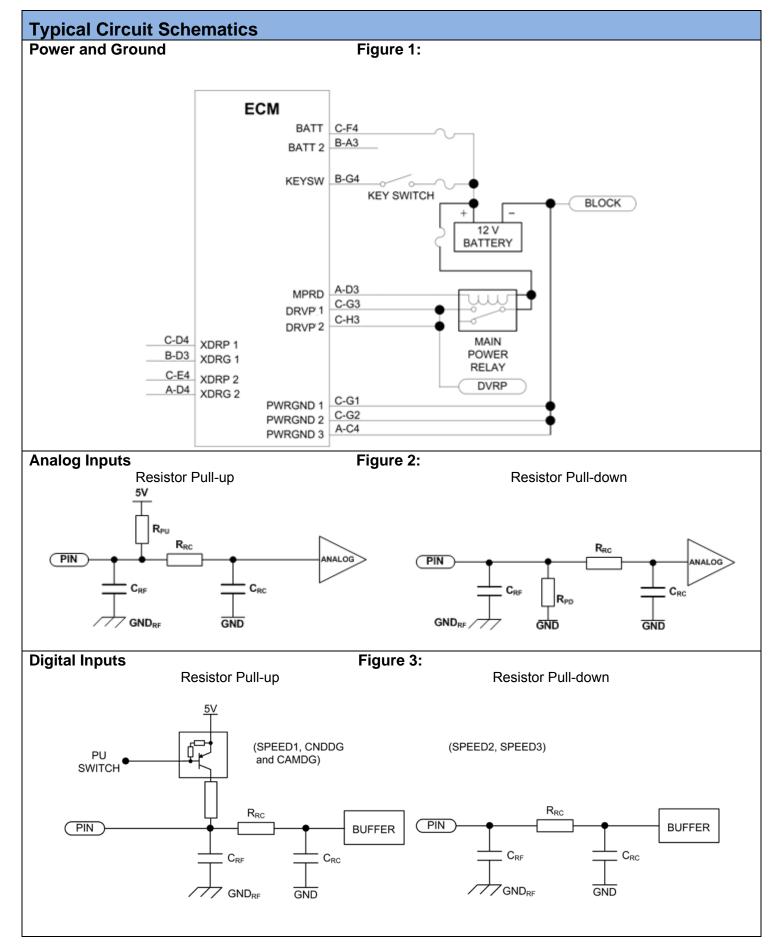
	(ECM-5	554-112-1001)
<u>C-F4</u> <u>B-A3</u> <u>B-G4</u> B-H3	BATT 1 BATT 2 ECUP(KEY SWITCH)	XDRP 1 <u>C-D4</u> XDRP 2 <u>C-E4</u> ★ MPRD <u>A-D3</u>
BJ2 	STOP CNK+ (VR) CNK- (VR)	← MPRD A-D3 DRVP 1 C-G3 DRVP 2 C-H3
B-H4 B-G1 B-E3 B-F1 B-F2 C-C3 C-A1 C-A2	CNK (DG) CAM (DG) AN1M (220K PD) AN2M (220K PD) AN3M (220K PD) AN4M (220K PD) AN5M (1K PU) AN6M (1K PU)	FUEL 1 $A-H1$ FUEL 2 $A-G3$ FUEL 3 $A-G4$ FUEL 4 $A-G4$ FUEL 5 $A-G1$ FUEL 6 $A-G2$ FUEL 7 $A-F3$ FUEL 8 $A-F4$
C-F2 C-A4 C-B1 C-B2 C-B3 C-B4 C-C1	AN7M (1k PU) AN8M (1k PU) AN9M (1k PU) AN10M (1k PU) AN11M (1k PU) AN11M (1k PU) AN12M (1k PU) AN13M (1k PU)	(3K PD) AN34M A-A4 (3K PD) AN35M A-A3 (3K PD) AN35M A-A2 (3K PD) AN36M A-A2 (3K PD) AN36M A-B4 (3K PD) AN38M A-B4 (3K PD) AN39M A-B3 (3K PD) AN40M A-B2
<u>B-D1</u> <u>B-D2</u> <u>B-E2</u> <u>B-E1</u>	KNK1+ KNK1- KNK2+ KNK2-	(3K PD)AN41M A-B1
	02A+ 02A- 02B+ 02C- 02C+ 02C- 02D+ 02D-	FUELPR (CCD) LSO1 A-F2 LSO2 A-E1 LSO3 A-F1 LSO4 (R_SENSE) B-M3 LSO5 (R_SENSE) B-M4 LSO6 (R_SENSE) B-M1 LSO7 (R_SENSE) B-M2 LSO8 A-E2
<u>B-B2</u> <u>B-B1</u> <u>B-B3</u>	CAN3+(NO INTERNAL CAN3-(NO INTERNAL CAN3 SHIELD	
<u> </u>	CAN1+ CAN1-	GNDREF B-L4 CASEGND B-C3 PWRGND 1 C-G1 PWRGND 2 C-G2
B-G2 B-F3 C-A3 B-A4 C-E2 B-C4 B-C4 B-D4 B-L3 B-L3 B-B4 C-E3 C-C4	SPEED1 (DG) AN14M (51.1K PD) AN15M (220K PD) AN16M (183 PU) AN17M (220K PD) AN18M (183 PU) AN19M (183 PU) AN20M (150K PU) AN21M (10K PU) AN22M (220K PD) AN23M (220K PD)	HBRIDGE1A C-H4
<u>B-C1</u> <u>B-C2</u>	CAN2+ CAN2-	HBRIDGE1B C-G4 HBRIDGE2A C-H2 HBRIDGE2B C-H1
B-H2 B-H1 C-D1 C-F1 B-F4 B-G3 B-E4 C-C2	SPEED2 (DG) SPEED3 (DG) AN24M (220K PD) AN25M (220K PD) AN26M (220K PD) AN27M (220K PD) AN28M (220K PD) AN29M (1K PU)	 ★ LSO9 A-E3 A-E4 LSO11 A-H4 LSO12 A-H3 A-D1
C-F3 C-E1 C-D2 C-D3	AN30M (220K PD) AN31M (1K PU) AN32M (1K PU) AN33M (150K PU)	(RS-485A) RS485+ <u>A-C3</u> (RS-485B) RS485- <u>A-C2</u>

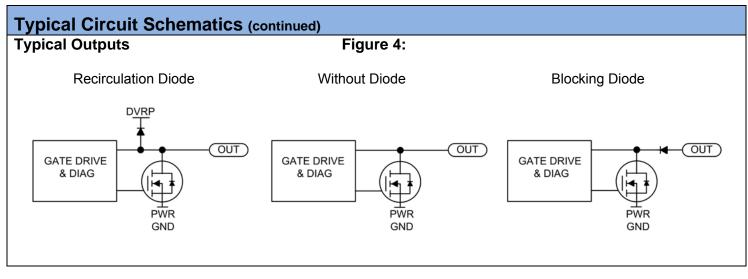
Outline Drawing

Input Signal Conditioning	Notes (see Resource by Connector Pin table and/or block diagram for pull up/pull down resistor levels)						
IMPORTANT The GCM has been validated in an application using typical loads. Maximum loading is based on datasheet values. Actual capability is somewhere between typical (validated) and maximum (datasheet) and is dependent on ambient temperature, system voltage, and the state of all other inputs and outputs. In most cases, it will not be possible for an application to use the maximum values. Please contact Woodward sales for more information.							
Power and Ground	(Note: See Figure 1 in "Typical Circuit Schematics" section for Power and Ground Block Diagram)						
BATT1, BATT2, ECUP (KEY SWITCH), DRVP 1, DRVP 2, PWRGND 1 , PWRGND 2, PWRGND 3							
BATT1 (C-F4), BATT2 (B-A3) BATT and BATT2 are internally connected (one electrical node). BATT is normally connected to battery via a fuse. BATT2 provides for a single connector programming harness; it is not normally connected in the application wiring harness.	V_{BATT} (min) = 4.5 V (crank transient) and 6.3 V (continuous) V_{BATT} (nom) = 9-16 V I_{BATT} (key off, min) = 1 mA. (Battery drain when module is off)						
ECUP (KEY SWITCH) (B-G4)	$V_{IL}(max) = 2.7 V$						
This input is the user interface to turn the module on and off.	V_{IH} (min)= 6.8 V V_{ADC} = 0.181 x V_{KEYSW} (12-bit resolution) τ = 1.8 ms						
	Note: The key switch provides the pull-up source for the STOP input. When the key is turned off STOP will be asserted (in hardware). See STOP.						
DRVP 1 (C-G3), DRVP 2 (C-H3)	$V_{\rm IN} = 0$ to 27.6 V						
These pins are normally connected to the output of the main power relay, Driver Power (battery voltage). They	$V_{ADC} = 0.181 V_{DRVP}$ (12-bit resolution) $\tau = 1.8 \text{ ms}$						
provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges.	Note: Unless otherwise specified, all low-side loads assume protection from reverse battery via the main power relay and DRVP.						
PWRGND 1 (C-G1),PWRGND 2 (C-G2),	Note: All DRVG terminals are internally connected (one						
PWRGND 3 (A-C4)	electrical node).						
These pins are the single point ground for the module.							
STOP (BH3)							
	Note: The pull-up diode prevents voltage/current from corrupting V_{KEY} . V_{STOP} is a function of V_{KEY} and the resistance of the stop switch. Blocking diode to prevent GCM from sinking current.						
CNK+ (VR) (B-J2), CNK- (VR) (B-J1)	V_{IN} (max) = 360 V peak-peak V_{IN} (min) = 500 mV peak-peak τ = 20 µs						
	Note: Assertion of STOP will disable processing of this signal (in hardware).						

VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 3.2 µs Notes: Hysteresis (and thresholds) are software configurable. Assertion of STOP will disable processing of this signal in hardware. This input may be used as a generic frequency input if the crank encoder is VR. Contact Woodward for more information on this feature.
VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 3.2 µs Note: Hysteresis (and thresholds) are software configurable.
VIN = 0-5 V VIL (max) = 2 V VIH (min) = 3 V VHYST = 500 mV τ = 6.2 µs (except for SPEED1 where τ = 3.2 µs) Note: The actual logic thresholds and hysteresis are software configurable.
VIN = -1 to +1.1 V from sensor $\tau = 165 \ \mu s$
Notes: The sensor MUST be isolated from ground and sensor's O2– must be connected to O2– input (not ground). Short-to-ground and short-to-battery protected.
Broad-band (flat response) sensors, able to provide independent cylinder knock sensors.
VIN = 0-5 V VADC = VIN τ = 1 ms Resolution= 12-bits Note: Short-to-ground and short-to-battery protected.

Output Signal Conditioning	Notes
See Figure 4 in "Typical Circuit Schematics" section.	Outputs are protected from shorts to battery and ground. Outputs have open circuit and short circuit detection, excluding XDRG and H-Bridges (see H-bridges note for details).
XDRP1 (C-D4), XDRG1 (B-D3) 5 V supply for analog sensors.	VOUT = 4.9 to 5.1 V IOUT (max) = 100 mA Notes: XDRG is not isolated from PWRGND. Take care not to create ground loops by connecting XDRG to other system grounds. Excessive current on XDRG can create a common- mode voltage error on all sensors connected to XDRG. XDRG is not protected from shorts-to-battery; excessive current may cause permanent damage.


Output Signal Conditioning	(continued)
XDRP2 (C-E4), XDRG2 (A-D4) 5 V supply for analog sensors.	VOUT = 4.9 to 5.1 V IOUT (max) = 50 mA
	Notes: XDRG is not isolated from PWRGND. Take care not to create ground loops by connecting XDRG to other system grounds. Excessive current on XDRG can create a common- mode voltage error on all sensors connected to XDRG. XDRG is not protected from shorts-to-battery; excessive current may cause permanent damage.
MPRD (A-D3)	ISINK (max) = 700 mA
Main power relay control output.	Notes: The high-side of the main power relay is normally connected to battery (fused). Reverse battery-protected.
FUELPR (A-D2)	ISINK (typ) = 165 mA (85 Ω relay) ISINK (max) = 700 mA
	Note: FUELPR will be disabled (off) ~300 ms after STOP assertion.
FUEL 1 (A-H1), FUEL 2 (A-H2), FUEL 3 (A-G3), FUEL 4 (A-G4), FUEL 5 (A-G1), FUEL 6 (A-G2), FUEL 7 (A-F3), FUEL 8 (A-F4) These outputs control the low-side of high impedance fuel injectors.	ISINK(typ) = 1 A ISINK(max) = 2 A VCLAMP = 55 V
GNDREF (B-L4)	This pin is intended to provide an ECU ground reference signal for remote modules (e.g. smart ignition coils)
TACH (A-C1)	ISINK (max) = 100 mA
Tachometer output with Link Interface capabilities.	Notes: The circuit is implemented as a low-side driver with 1.8 k Ω resistor pull-up to KEYSW. A blocking diode is also included to prevent back feeding into KEYSW.
LSO1 (A-F2), LSO13 (A-D1)	ISINK (typ) = 0 A to 1 A ISINK (max) = 1 A VCLAMP = 55 V
	Notes: Implementation uses low-side drive with flyback (recirculation) diode. Controlled current.
LSO2 (A-E1), LSO3 (A-F1), LSO8 (A-E2)	ISINK (typ) = 165 mA ISINK (max) = 700 mA VCLAMP = 55 V
LSO4 (B-M3), LSO5 (B-M4), LSO6 (B-M1), LSO7 (B-M2)	ISINK (typ) = 1 A ISINK (max) = 7 A VCLAMP = 55 V
	Note: Diagnostic includes current feedback.
LSO9 (A-E3), LSO10 (A-E4)	ISINK (typ) = 165 mA
Output are protected from reverse battery via a series diode.	ISINK (max) = 700 mA VCLAMP = 55 V


Output Signal Conditioning	(continued)
LSO11 (A-H4), LSO12 (A-H3)	ISINK (typ) = 165 mA ISINK (max) = 350 mA VCLAMP = 55 V
HBRIDGE1A (C-H4), HBRIDGE1B (C-G4)	IO (max) = 10 A FO (max) = 10 kHz Note: Sign-magnitude (PWM) with diagnostic current sense feedback. H-Bridges only shutdown for over temperature. Repeatedly taking the chip to its thermal limit will reduce life.
HBRIDGE2A (C-H2), HBRIDGE2B (C-H1)	IO (max) = 10 A FO (max) = 10 kHz Note: Sign-magnitude (PWM) with diagnostic current sense feedback. H-Bridges only shutdown for over temperature. Repeatedly taking the chip to its thermal limit will reduce life.

Communications	
CAN1+ (B-A1), CAN1– (B-A2), CAN2+ (B-C1), CAN2– (B-C2), CAN3+ (B-B2), CAN3– (B-B1)	High-speed CAN 2.0B buses. Note: Regarding termination: CAN1, CAN2, CAN3 buses require external termination. Regarding CANSHIELD: CAN3 SHIELD is available for shielded bus connections. The internal connection to PCM ground consists of a 1 Ω resister in series with a 1 μ F capacitor.
RS485+ (A-C3), RS485– (A-C2)	RS-485 serial lines

Memory	
FLASH	2 MB of FLASH memory, on chip.
RAM	64 K of RAM, on chip.
For calibratible development units (1751-6457)	512 K (256 k x 2) of external static RAM
EEPROM	32 K EEPROM; serial.

Woodward 36370 p.10

Connector Pinouts

Pin#		Pin#		Pin#		Pin#	
	AN37M		AN36M	_	AN35M		AN34M
A-A1	Analog Input 37	A-A2	Analog Input 36	A-A3	Analog Input 35	A-A4	Analog Input 34
	Rpulldown=3K		Rpulldown=3K		Rpulldown=3K		Rpulldown=3K
	AN41M		AN40M		AN39M		AN38M
A-B1	Analog Input 41	A-B2	Analog Input 40	A-B3	Analog Input 39	A-B4	Analog Input 38
	Rpulldown=3K		Rpulldown=3K		Rpulldown=3K		Rpulldown=3K
	ТАСН		RS485-		RS485+		DRVG 3
A-C1	5 V Digital Output	A-C2	Serial Communications	A-C3	Serial Communications	A-C4	Power Ground
	Rpullup= 1.8K to KEY		RS-485B		RS-485A		
	LSO13		FUELPR		MPRD		XDRG 2
A-D1	Low Side Output 13	A-D2	Fuel Pump Relay	A-D3	Main Power Relay Driver	A-D4	Transducer Ground
	Controlled current				Reverse battery diode, 1 A		Analog ground reference
	LSO2		LSO8		LSO9		LSO10
A-E1	Low Side Output 2	A-E2	Low Side Output 8	A-E3	Low Side Output 9	A-E4	Low Side Output 10
				A LO	Reverse battery diode		Reverse battery diode
	LSO3		LSO1		FUEL 7		FUEL 8
A-F1	Low Side Output 3	A-F2	Low Side Output 1	A-F3	Fuel Injector 7	A-F4	Fuel Injector 8
			Controlled current		Low-side driver		Low-side driver

Pin#		Pin#		Pin#		Pin#	
	FUEL 5		FUEL 6		FUEL 3		FUEL 4
A-G1	Fuel Injector 5	A-G2	Fuel Injector 6	A-G3	Fuel Injector 3	A-G4	Fuel Injector 4
	Low-side driver		Low-side driver		Low-side driver		Low-side driver
	FUEL 1	A-H2	FUEL 2	A-H3	LSO12		LSO11
A-H1	Fuel Injector 81		Fuel Injector 2		Low Side Output 12	A-H4	Low Side Output 11
	Low-side driver		Low-side driver		Discrete		Discrete
	CAN1+		CAN1-		BATT 2		AN16M
B-A1	CAN1 Hi signal	B-A2	CAN1 Low signal	B-A3	Battery	B-A4	Analog Input 16
D / II	CAN 2.0B	2712	CAN 2.0B		Internal connect to BATT 1		Rpullup= 183
	CAN3-		CAN3+		CANSHIELD3		AN21M
B-B1	CAN3 Low signal	B-B2	CAN3 Hi signal	B-B3	CAN Shield 3	B-B4	Analog Input 21
	CAN 2.0B		CAN 2.0B				Rpullup= 10K
	CAN2+		CAN2-		CASEGND		AN18M
B-C1	CAN2 Hi signal	B-C2	CAN2 Low signal	B-C3	Case ground	B-C3	Analog Input 18
	CAN 2.0B		CAN 2.0B				Rpullup= 183
	KNK1+		KNK1-		XDRG 1		AN19M
B-D1	Knock Sensor Hi	B-D2	Knock Sensor Low	B-D3	Transducer Ground	B-D4	Analog Input 19
	Differential broad- band		Differential broad- band		Analog ground reference		Rpullup= 183
	KNK2-		KNK2+		AN1M		AN28M
B-E1	Knock Sensor Low	B-E2	Knock Sensor Hi	B-E3	Analog Input 1	B-E4	Analog Input 28
	Differential broad- band		Differential broad- band	-	Rpulldown= 220K		Rpulldown= 220K
	AN2M		AN3M		AN14M		AN26M
B-F1	Analog Input 2	B-F2	Analog Input 3	B-F3	Analog Input 14	B-F4	Analog Input 26
	Rpulldown= 220K		Rpulldown= 220K		Rpulldown= 51.1K		Rpulldown= 220K
	CAM (DG)		SPEED 1 (DG)		AN27M		ECUP
B-G1	Camshaft Sensor	B-G2	Speed Sensor 1	B-G3	Analog Input 27	B-G4	Key Switch Input
	Engine camshaft position		Resolves variable freq.		Rpulldown= 220K		Module "wake up" signal
	SPEED 3 (DG)		SPEED 2 (DG)		STOP		CNK (DG)
5.14	Speed Sensor 2	5.110	Speed Sensor 3	5.146	E-Stop Input	B-H4	Crankshaft Sensor
B-H1	Resolves variable freq.	B-H2	Resolves variable freq.	B-H3	Shuts off engine, disables fuel		Digital only
	CNK- (VR)		CNK+ (VR)		02C-		O2D-
B-J1	Crankshaft Sensor Lo	B-J2	Crankshaft Sensor Hi	B-J3	Oxygen Sensor Lo	B-J4	Oxygen Sensor Lo
	VR only		VR only		Switching type		Switching type

Pin#		Pin#		Pin#		Pin#	
	O2A+		O2B+		O2C+		O2D+
B-K1	Oxygen Sensor Hi	B-K2	Oxygen Sensor Hi	В-КЗ	Oxygen Sensor Hi	B-K4	Oxygen Sensor Hi
	Switching type		Switching type		Switching type		Switching type
B-L1	O2A-	B-L2	O2B-	B-L3	AN20M	B-L4	GNDREF
	Oxygen Sensor Lo		Oxygen Sensor Lo		Analog Input 20		Digital Ground Reference
	Switching type		Switching type		Rpullup= 150K		
B-M1	LSO6	B-M2	LSO7		LSO4	. B-M4	LSO5
	Low Side Output 6		Low Side Output 7	B-M3	Low Side Output 4		Low Side Output 5
C-A1	AN5M	C-A2	AN6M	C-A3	AN15M	C-A4	AN8M
	Analog Input 5		Analog Input 6		Analog Input 15		Analog Input 8
	Rpullup= 1K		Rpullup= 1K		Rpulldown= 220K		Rpullup= 1K
	AN9M		AN10M		AN11M		AN12M
C-B1	Analog Input 9	C-B2	Analog Input 10	C-B3	Analog Input 11	C-B4	Analog Input 12
	Rpullup= 1K		Rpullup= 1K		Rpullup= 1K		Rpullup= 1K
	AN13M	C-C2	AN29M	C-C3	AN4M	C-C4	AN23M
C-C1	Analog Input 13		Analog Input 29		Analog Input 4		Analog Input 23
	Rpullup= 1K		Rpullup= 1K		Rpulldown= 220K		Rpulldown= 220K
	AN24M	C-D2	AN32M	C-D3	AN33M	C-D4	XDRP 1
C-D1	Analog Input 24		Analog Input 32		Analog Input 33		Transducer Power
	Rpulldown= 220K		Rpullup= 1K		Rpullup= 150K		5 V Sensor Power
	AN31M	C-E2	AN17M	C-E3	AN22M	C-E4	XDRP 2
C-E1	Analog Input 31		Analog Input 17		Analog Input 22		Transducer Power
	Rpullup= 1K		Rpulldown= 220K		Rpulldown= 220K		5 V Sensor Power
	AN25M	C-F2	AN7M	C-F3	AN30M	C-F4	BATT 1
C-F1	Analog Input 25		Analog Input 7		Analog Input 30		Battery
	Rpulldown= 220 K		Rpullup= 1K		Rpulldown= 220K		Internal connect BATT 2
C-G1	PWRGND 1	C-G2	PWRGND 2	C-G3	DRVP 1	C-G4	HBRIDGE1B
	Driver Ground		Driver Ground		Driver Power		H-Bridge Output 1
					Recirculation path		Sign-magnitude (PWM)
C-H1	HBRIDGE2B	C-H2	HBRIDGE2A	C-H3	DRVP 2	C-H4	HBRIDGE1A
	H-Bridge Output 2		H-Bridge Output 2		Driver Power		H-Bridge Output 1
	Discrete mode		Discrete mode		Recirculation path		Sign-magnitude (PWM)

Environmental Ratings

Environmental Ratings	Notes			
The GCM is designed for automotive, under hood and marine industry environmental requirements. Validat include extreme operating temperatures, thermal shock, humidity, salt spray, salt fog, immersion, fluid resis mechanical shock, vibration, and EMC. The customer must contact Woodward and provide the intended enconditions in the application for verification of performance capability.				
Storage Temperature	–40 °C to +125 °C			
Operating Temperature	-40 °C to +105 °C			
Thermal Shock	–40 °C to +125 °C			
Fluid Resistance	Two-stroke motor oil, four-stroke motor oil, unleaded gasoline, ASTM Reference 'C' fuel			
Humidity Resistance	90 % humidity at 85 °C for 1000 hours			
Salt Fog Resistance	500 hours. 5 % salt fog, 35 °C			
Immersion	4.34 psi test (simulated 3 m / 10 feet), salt water, 20 minutes			
Mechanical Shock	50 G's, 11 ms, half-sine wave			
Drop Test	Drop test on concrete from 1 m			
VibrationThis GCM family has been successfully deployed in engine mounted applications ranging from common small displacement engines to large racing engines with extreme vibrations. Electrical and mechanical isolation is achieved via Woodward mounting hardware (consisting of grommet, bushing, and washer) shown to the right.IMPORTANTFor prior verification of performance capability, contact Woodward and provide the vibration profile of the intended application.				

Using a Boot Key/Cable

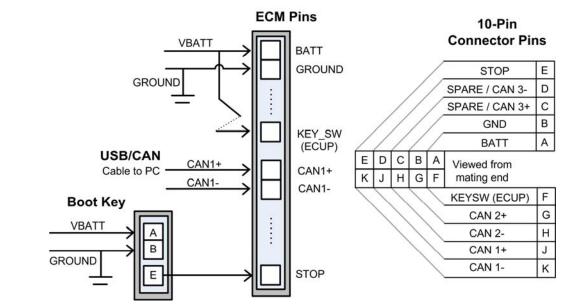
Errors in configuration, logic and/or other programming made during program development for this module (via .srz file), can cause a persistent loss of CAN communications with the module under development.

If this happens, apply the boot key (or cable, depending on the model) to force the module into reboot mode, reloading the module with functional program code (a known, valid .srz file) in order to allow resumption of module communication. Follow the steps listed in this section. Refer to diagram below for connections.

Refer to "Ordering Information" on p. 2 for related boot key/cable part numbers.

AWARNING Remove ECU from control connections before performing

the reboot procedure, as outputs are set to defaults or undefined states, with possibly unpredictable and hazardous results if applied.


NOTICE

Remove other ECUs from CANbus for this procedure.

- 1. Connect the module for programming via necessary cables, CAN converter, etc.
- 2. Select a known, valid .srz file for programming.
- 3. With key off, disconnect battery power from module. With module power off, initiate programming of the module using MotoTune.
- 4. When the "Looking for an ECU" prompt appears in the dialog, reconnect Battery, and then turn key on, to power up and "wake-up" ECU.

The module must "wake-up"—KEYSW (or ECUP) on—with the boot key or cable connections applied as described in order to initiate a reboot and to absorb the selected program.

IMPORTANT A boot key provides a 555 Hz, 50 % duty cycle, V=Vbatt, square wave signal to the STOP pin, which may be duplicated by applying this signal from a signal generator to that pin.

NOTES:

1) This pinout reflects the Mercury Marine SmartCraft pinout standard for CAN2 and CAN3:

- CAN2 on pins G/H
 - CAN3 on pins C/D

2) Some MotoHawk Control Solutions products, including the dual-channel KVASER cable (Woodward P/N 5404-1324), use an alternate pinout standard:

- CAN2 on pins C/D
- CAN3 on pins G/H

WOODWARD

PO Box 1519, Fort Collins CO, USA 80522-1519 1000 East Drake Road, Fort Collins CO 80525 Tel.: +1 (970) 482-5811 • Fax: +1 (970) 498-3058 mcsinfo@woodward.com • mcs.woodward.com www.woodward.com

This document is distributed for informational purposes only. It is not to be construed as creating or becoming part of any Woodward contractual or warranty obligation unless expressly stated in a written sales contract.

© Woodward 2012, All Rights Reserved

For more information contact: