

IKD 1 Digital I/O Expansion Board

Manual Software version 1.00xx

Manual 37135E

WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

http://www.woodward.com/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

Revision History

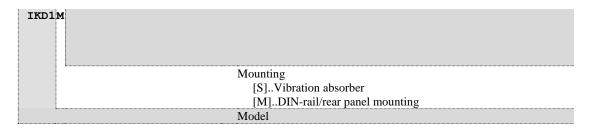
Rev.	Date	Editor	inges			
Е	2016-05-13	GG	Technical Data added: Vibration and Shock (see page 33)			
D	2012-09-07	GG	Technical Data updated: CAN Bus Parameter table updated			
С	11-09-08	TE	corrections			
В	07-12-20	TP	Minor corrections			
А	04-06-03	TP	Minor corrections			
NEW	03-02-14	Tr	Release			

Contents

Introduction	CHAPTER 1. GENERAL INFORMATION	5
CHAPTER 3. INSTALLATION 7 Power Supply 7 Discrete Inputs 8 Positive Logic 8 Negative Logic 8 Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Coupling to a PLC 14 Configuration Options 18 Configuration Options 18 Configuration Options 18 ChaPTER 5. LEDS AND INTERFACES 19 Interfaces 19 Direct Configuration (DPC) 19 Direct Configuration (DPC) 19 CAN Bus Parameter 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 24 Preendix A. WIRING DIAGRAM 30	Introduction	5
Power Supply 7 Discrete Inputs 8 Positive Logic 8 Negative Logic 8 Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Configuration Options 18	CHAPTER 2. ELECTROSTATIC DISCHARGE AWARENESS	6
Power Supply 7 Discrete Inputs 8 Positive Logic 8 Negative Logic 8 Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Configuration Options 18	CHAPTER 3. INSTALLATION	7
Positive Logic 8 Negative Logic 8 Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Coupling to a PLC 15 Discrete Inputs 18 Relay Outputs 18 Configuration Options 18 CHAPTER 5. LEDS AND INTERFACES. 19 Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30	Power Supply	7
Negative Logic 8 Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 CAN Bus Telegrams 15 Discrete Inputs 18 Relay Outputs 18 Configuration Options 19 Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 5. LEDS AND INTERFACES 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 21 Discrete Inputs 21 Aelay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
Relay Outputs 9 Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Coupling to a DLC 14 Coupling to a PLC 14 Coupling to a DLC 14 Coupling to a PLC 15 Discrete Inputs 18 Configuration Options 18 CHAPTER 5. LEDS AND INTERFACES 19 Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN B		
Interface 10 CAN Bus 10 DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 CAN Bus Telegrams 15 Discrete Inputs 18 Relay Outputs 18 ChAPTER 5. LEDS AND INTERFACES 19 Interfaces 19 Direct Configuration (DPC) 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
CAN Bus10DPC - Direct Configuration Cable12CHAPTER 4. FUNCTIONAL DESCRIPTION13Introduction13Main Functions14Coupling to a Higher Level Control Unit (e.g. GCP)14Coupling to a PLC14CAN Bus Telegrams15Discrete Inputs18Relay Outputs18ChAPTER 5. LEDS AND INTERFACES19Direct Configuration (DPC)19Direct Configuration (DPC)19Discrete Inputs20CAN Bus Parameter21Discrete Inputs20CAPTER 7. COMMISSIONING29APPENDIX A. WIRING DIAGRAM30		
DPC - Direct Configuration Cable 12 CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 14 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 CAN Bus Telegrams 15 Discrete Inputs 18 Relay Outputs 18 ChAPTER 5. LEDS AND INTERFACES 19 Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
CHAPTER 4. FUNCTIONAL DESCRIPTION 13 Introduction 13 Main Functions 13 Coupling to a Higher Level Control Unit (e.g. GCP) 14 Coupling to a PLC 14 Coupling to a PLC 14 CAN Bus Telegrams 15 Discrete Inputs 18 Relay Outputs 18 Configuration Options 18 Chapter 5. LEDS And INTERFACES 19 Interfaces 19 Direct Configuration (DPC) 19 Chapter 6. Configuration (DPC) 19 Chapter 6. Configuration (DPC) 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 Chapter 7. Commissionning 29 Appendix A. WIRING DIAGRAM 30		
Main Functions14Coupling to a Higher Level Control Unit (e.g. GCP)14Coupling to a PLC14CAN Bus Telegrams15Discrete Inputs18Relay Outputs18Configuration Options18CHAPTER 5. LEDS AND INTERFACES19Interfaces19Direct Configuration (DPC)19CHAPTER 6. CONFIGURATION20Basic Data20CAN Bus Parameter21Discrete Inputs24Relay Outputs27CHAPTER 7. COMMISSIONING29APPENDIX A. WIRING DIAGRAM30	0	
Main Functions14Coupling to a Higher Level Control Unit (e.g. GCP)14Coupling to a PLC14CAN Bus Telegrams15Discrete Inputs18Relay Outputs18Configuration Options18CHAPTER 5. LEDS AND INTERFACES19Interfaces19Direct Configuration (DPC)19CHAPTER 6. CONFIGURATION20Basic Data20CAN Bus Parameter21Discrete Inputs24Relay Outputs27CHAPTER 7. COMMISSIONING29APPENDIX A. WIRING DIAGRAM30	CHAPTER 4. FUNCTIONAL DESCRIPTION	<u>13</u>
Coupling to a Higher Level Control Unit (e.g. GCP)14Coupling to a PLC14CAN Bus Telegrams15Discrete Inputs18Relay Outputs18Configuration Options18CHAPTER 5. LEDS AND INTERFACES19LEDs19Interfaces19Direct Configuration (DPC)19CHAPTER 6. CONFIGURATION20Basic Data20CAN Bus Parameter21Discrete Inputs24Relay Outputs27CHAPTER 7. COMMISSIONING29APPENDIX A. WIRING DIAGRAM30		
Coupling to a PLC14CAN Bus Telegrams15Discrete Inputs18Relay Outputs18Configuration Options18CHAPTER 5. LEDS AND INTERFACES19LEDs19Interfaces19Direct Configuration (DPC)19CHAPTER 6. CONFIGURATION20CAN Bus Parameter21Discrete Inputs24Relay Outputs27CHAPTER 7. COMMISSIONING29APPENDIX A. WIRING DIAGRAM30		
CAN Bus Telegrams15Discrete Inputs18Relay Outputs18Configuration Options18Chapter 5. LEDs And Interfaces19LEDs19Interfaces19Direct Configuration (DPC)19Chapter 6. Configuration20Basic Data20CAN Bus Parameter21Discrete Inputs24Relay Outputs27Chapter 7. Commissioning29Appendix A. Wiring Diagram30		
Discrete Inputs 18 Relay Outputs 18 Configuration Options 18 Chapter 5. LEDs And Interfaces 19 LEDs 19 Interfaces 19 Direct Configuration (DPC) 19 Chapter 6. Configuration 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. Commissioning 29 Appendix A. Wiring Diagram 30		
Relay Outputs 18 Configuration Options 18 CHAPTER 5. LEDS AND INTERFACES 19 LEDs 19 Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
Configuration Options.18CHAPTER 5. LEDS AND INTERFACES.19LEDs.19Interfaces.19Direct Configuration (DPC).19CHAPTER 6. CONFIGURATION.20Basic Data20CAN Bus Parameter.21Discrete Inputs24Relay Outputs.27CHAPTER 7. COMMISSIONING.29APPENDIX A. WIRING DIAGRAM.30		
LEDs. 19 Interfaces. 19 Direct Configuration (DPC). 19 CHAPTER 6. CONFIGURATION. 20 Basic Data 20 CAN Bus Parameter. 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM. 30		
LEDs. 19 Interfaces. 19 Direct Configuration (DPC). 19 CHAPTER 6. CONFIGURATION. 20 Basic Data 20 CAN Bus Parameter. 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM. 30		10
Interfaces 19 Direct Configuration (DPC) 19 CHAPTER 6. CONFIGURATION 20 Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30	I FDe	19
Direct Configuration (DPC). 19 CHAPTER 6. CONFIGURATION. 20 Basic Data 20 CAN Bus Parameter. 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM. 30		
CHAPTER 6. CONFIGURATION.20Basic Data20CAN Bus Parameter.21Discrete Inputs24Relay Outputs.27CHAPTER 7. COMMISSIONING.29APPENDIX A. WIRING DIAGRAM.30		
Basic Data 20 CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
CAN Bus Parameter 21 Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
Discrete Inputs 24 Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
Relay Outputs 27 CHAPTER 7. COMMISSIONING 29 APPENDIX A. WIRING DIAGRAM 30		
CHAPTER 7. COMMISSIONING		
APPENDIX A. WIRING DIAGRAM		
APPENDIX B. DIMENSIONS	APPENDIX A. WIRING DIAGRAM	30
	APPENDIX B. DIMENSIONS	

APPENDIX C. TECHNICAL DATA	
APPENDIX D. LIST OF PARAMETERS	
APPENDIX E. SERVICE OPTIONS	
Product Service Options	
Returning Equipment For Repair	
Packing A Control	
Return Authorization Number RAN	
Replacement Parts	
How To Contact Woodward	
Engineering Services	
Technical Assistance	

Illustrations


Figure 3-1: Power supply	. 7
Figure 3-2: Discrete inputs - positive logic	
Figure 3-3: Discrete input - negative logic	. 8
Figure 3-4: Relay outputs	
Figure 3-5: Interface - Terminals	
Figure 3-6: Interface - loop of CAN bus	10
Figure 3-7: Interface - shielding of CAN bus	
Figure 6-1: NO/NC	27
Figure 7-1: Wiring diagram	30
Figure 7-2: Dimensions	

Chapter 1. General Information

Introduction

The IKD 1 is an external digital expansion card that can be used alternatively with an upper level control unit (e. g. GCP) or an PLC. The IKD 1 can read the status of 8 discrete inputs and transmit these via the CAN bus to the higher level control unit. In the opposite direction the higher level control unit can control the 8 relay outputs situated on the IKD 1 via the CAN bus.

Type designation of the IKD 1 as follows:

Examples:

- IKD1M (standard unit for DIN-rail/rear panel mounting)
- IKD1S (standard unit for vibration absorber mounting)

Intended Use The item must only be operated for the uses described in this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage, and installation as well as careful operation and maintenance.

NOTE

These manual have been developed for an item fitted with all available options. Inputs/outputs, functions, configuration screens and other details described, which do not exist on your item may be ignored.

The present manual has been prepared to enable the installation and commissioning of the item. On account of the large variety of parameter settings, it is not possible to cover every possible combination. The manual are therefore only a guide. In case of incorrect entries or a total loss of functions, the default settings can be taken from the enclosed list of parameters.

Chapter 2. Electrostatic Discharge Awareness

All electronic equipment is static-sensitive, some components more than others. To protect these components from static damage, you must take special precautions to minimize or eliminate electrostatic discharges.

Follow these precautions when working with or near the control.

- 1. Before doing maintenance on the electronic control, discharge the static electricity on your body to ground by touching and holding a grounded metal object (pipes, cabinets, equipment, etc.).
- 2. Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 3. Keep plastic, vinyl, and Styrofoam materials (such as plastic or Styrofoam cups, cup holders, cigarette packages, cellophane wrappers, vinyl books or folders, plastic bottles, and plastic ash trays) away from the control, the modules, and the work area as much as possible.
- 4. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
 - Ensure that the device is completely de-energized (all connectors must be disconnected).
 - Do not touch any part of the PCB except the edges.
 - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
 - When replacing a PCB, keep the new PCB in the plastic antistatic protective bag it comes in until you are ready to install it. Immediately after removing the old PCB from the control cabinet, place it in the antistatic protective bag.

Warning

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

Chapter 3. Installation

Caution

A circuit breaker must be provided near to the device and in a position easily accessible to the operator. This must also bear a sign identifying it as an isolating switch for the unit.

1	•	
(1)
	-	Ϊ

NOTE

Inductivities connected (such as coils of operating current or undervoltage tripping devices, or auxiliary or power contacts) must be connected to a suitable interference suppressor.

Power Supply

• 6 to 36 Vdc

Figure 3-1: Power supply

Terminal	Description	Amax
1	6 to 36 Vdc	2.5 mm ²
2	0 Vdc	2.5 mm ²

Discrete Inputs

CAUTION

Please note that the maximum voltages which may be applied at the discrete inputs are defined as follows. Voltages higher than those specified destroy the hardware!

• Maximum input range: ±6 to 32 Vdc.

The discrete inputs may be either connected in a positive or a negative logic circuit:

- positive logic The discrete input is connected with ± 6 to 32 Vdc.
- negative logic The discrete input is connected with GND.

Positive Logic

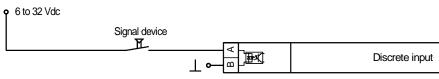


Figure 3-2: Discrete inputs - positive logic

Terminal	Associated	Description	A _{max}
	common	(according to DIN 40 719, part 3, 5.8.3)	
A	В		
5		Discrete input 1	2.5 mm ²
6		Discrete input 2	2.5 mm ²
7		Discrete input 3	2.5 mm ²
8	4	Discrete input 4	2.5 mm ²
9	4	Discrete input 5	2.5 mm ²
10		Discrete input 6	2.5 mm ²
11		Discrete input 7	2.5 mm ²
12		Discrete input 8	2.5 mm ²

Negative Logic

6 to 32 Vdc

	∢	h	
<u>P</u>	m	L™™	Discrete input
a	-		
Signal device			

Figure 3-3: Discrete input - negative logic

Associated common	Terminal	Description (according to DIN 40 719, part 3, 5.8.3)	A _{max}
A	В		
	5	Discrete input 1	2.5 mm ²
	6	Discrete input 2	2.5 mm ²
	7	Discrete input 3	2.5 mm ²
4	8	Discrete input 4	2.5 mm ²
4	9	Discrete input 5	2.5 mm ²
	10	Discrete input 6	2.5 mm ²
	11	Discrete input 7	2.5 mm ²
	12	Discrete input 8	2.5 mm ²

Relay Outputs

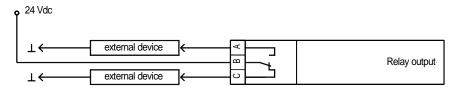


Figure 3-4: Relay outputs

			Description	Amax
(Change-ove	r		
Swtchd A [NO]	Root B	Opened C [NC]		
19	20	21	Relay 1	2.5 mm ²
22	23	24	Relay 2	2.5 mm ²
25	26	27	Relay 3	2.5 mm ²
28	29	30	Relay 4	2.5 mm ²
31	32	33	Relay 5	2.5 mm ²
34	35	36	Relay 6	2.5 mm ²
37	38	39	Relay 7	2.5 mm ²
40	41	42	Relay 8	2.5 mm ²

Interface

CAN Bus

Connection

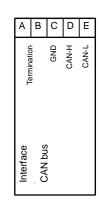


Figure 3-5: Interface - Terminals

Terminal					Description
A (18)	B (17)	C (16)	D (15)	E (14)	
[1]	[1]	GND	CAN-H	CAN-L	CAN bus
[1]					

[1]..could be used to loop CAN bus and/or to connect termination resistance.

Bus Structure

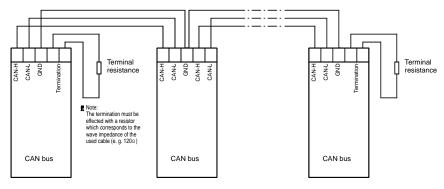


Figure 3-6: Interface - loop of CAN bus

NOTE

1

The CAN bus must be terminated with an impedance which corresponds to the wave impedance of the cable (e.g. 120 Ohm). The terminating resistor is positioned between CAN-H and CAN-L.

Possible CAN Bus Problems

If no data is transmitted on the CAN bus, check the following for common CAN bus communication problems:

- T structure bus is utilized
- CAN-L and CAN-H are interchanged
- Not all devices on the bus are using identical Baud rates
- Terminating resistor are missing
- Baud rate to high for wiring length
- The CAN bus cable is co-routed with power cables

Woodward recommends the use of twisted-pair cables for the CAN bus (i.e.: Lappkabel Unitronic LIYCY (TP) $2 \times 2 \times 0.25$, UNITRONIC-Bus LD $2 \times 2 \times 0.22$).

Maximum CAN bus Length

The maximum length of the communication bus wiring is dependent on the configured Baud rate. Refer to the following table for the maximum bus length (Source: CANopen; Holger Zeltwanger (Hrsg.); 2001 VDE VERLAG GMBH, Berlin und Offenbach; ISBN 3-8007-2448-0).

Baud rate	Max. length
1000 kbit/s	25 m
800 kbit/s	50 m
500 kbit/s	100 m
125 kbit/s	250 m
50 kbit/s	1000 m
20 kbit/s	2500 m

The maximum specified length for the communication bus wiring might not be achieved if poor quality wire is utilized, there is high contact resistance, or other conditions exist. Reducing the baud rate may overcome these issues.

Shielding

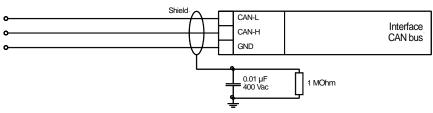


Figure 3-7: Interface - shielding of CAN bus

DPC - Direct Configuration Cable

The IKD 1 provides a configuration interface for connecting a computer via the DPC (direct configuration cable). The configuration interface is the RJ45 socket on the IKD 1 board.

i NOTE

Configuration with the direct configuration cable DPC (P/N 5417-557) is possible. A laptop/PC, the DPC cable, the program LeoPC1 version 3.1.1 or higher (included on CD Rom with control unit), and the proper configuration files are required.

NOTE

The connection cable delivered with the DPC must be used between DPC and IKD 1 to ensure proper functionality of the IKD 1. An extension or utilization of different cable types for the connection between IKD 1 and DPC may result a malfunction of the IKD 1. This may possibly result in damage to components of the system. If an extension of the data connection line is required, only the serial cable (RS-232) between DPC and laptop/PC may be extended. It is recommended to use an industry standard cable for this.

Chapter 4. Functional Description

Introduction

The IKD 1 is a external expansion board with totally

- 8 discrete inputs as well as
- 8 relay outputs.

This in- and outputs can be alternatively controlled from

- a higher level control unit (e.g. GCP, easYgen) or
- a PLC.

Therefore different parameters are available that have to be adjusted in dependence of the application. The IKD 1 is to be used dependent on the definition alternatively at

- the Engine CAN bus (coupling via a higher level control unit, e.g. GCP) or directly at
- the Guidance CAN bus (coupling to a PLC).

Following main functions apply dependent on the use.

Main Functions

Coupling to a Higher Level Control Unit (e.g. GCP)

- 1. Recognition of status transferred via external sensors to the discrete inputs and transfer via the engine CAN bus to the higher level control unit that is coupled with the IKD 1. Evaluation is proceeded according to the configured action and additional steps are initiated.
- 2. Output of signals to the relays that are received from the higher level control unit. For this feature it is possible to configure the relays of the IKD 1 using the relay manager of the higher level control unit (please note external description of higher level control unit).

Coupling to a PLC

- 1. Recognition of status transferred via external sensors to the discrete inputs and transfer via the engine CAN bus to the PLC that is coupled with the IKD 1. Evaluation is proceeded according to the program in the PLC.
- 2. Output of signals to the relays that are received from the PLC. For this feature the relays have to be controlled from the PLC

CAN Bus Telegrams

Communication via the CAN bus is used to exchange data between components coupled to the CAN bus. Using the CAN bus it is possible to cyclically output internal data. If configuration is proceeded using the D-1 parameters are equal to the parameters of the full version of LeoPC1 (please note that the CAN IDs can only be read-out).

Identifier (ID)

The IDs can be configured. Please note that selected CAN bus specific parameters can only be changed using the direct configuration interface (e.g. baud rate and IDs).

NOTE

When setting the ID please make sure that no conflicts occur with other bus participants.

NOTE

If you configure a Node ID \neq 0 no other IDs have to be configured. All other IDs are automatically preassigned and configuration as well as display of IDs is invalid thereby. The displayed IDs during configuration are valid for Node ID = 0 !

6 transmit or receive message boxes are scheduled which IDs can be freely assigned at Node ID = 0:

- receiving of data,
- transmitting of data,
- receiving of configuration messages,
- transmitting of an answer to a configuration message,
- receiving of uploads and
- sending of uploads.

Additionally the unit reacts on start/stop messages on ID 0.

Cyclically Transmitting Data

If configured a MUX is cyclically sent with the preset Baud rate. The length of a transmitted message is 8 byte. The following format applies:

Byte 0	Byte 1	Byte 2	Byte 3
Transmit MUX	Status of the discrete inputs	Status of the relays (correspond to the LED)	High Nibble - alarm class input 1 Low Nibble - alarm class input 2

Byte 4	Byte 5	Byte 6	Byte 7
High Nibble	High Nibble	High Nibble	Summarized alarm class and
- alarm class input 3	- alarm class input 5	- alarm class input 7	CAN status bit
Low Nibble	Low Nibble	Low Nibble	
- alarm class input 4	- alarm class input 6	- alarm class input 8	Details see below

Detail to Byte 1:

Bit $0 = 1$:	input 1 is triggered
Bit 1 = 1:	input 2 is triggered
Bit $2 = 1$:	input 3 is triggered
Bit 3 = 1:	input 4 is triggered
Bit 4 = 1:	input 5 is triggered
Bit 5 = 1:	input 6 is triggered
Bit 6 = 1:	input 7 is triggered
Bit 7 = 1:	input 8 is triggered

Detail to Byte 2:

Bit $0 = 1$:	relay 1 activated
Bit 1 = 1:	relay 2 activated
Bit 2 = 1:	relay 3 activated
Bit 3 = 1:	relay 4 activated
Bit $4 = 1$:	relay 5 activated
Bit 5 = 1:	relay 6 activated
Bit 6 = 1:	relay 7 activated
Bit 7 = 1:	relay 8 activated

(The physical and not the logical state is evaluated, i.e. the byte is an identical copy of the LED.)

Detail to Bytes 3 to 6:

The alarm class of two inputs is transferred in one byte (high/low Nibble). The alarm class is coded as follows:

Alarm class	Value of the Nibble (when input is triggered)
0	1
1	2
2	3
3	4
Control	$\equiv 0$ (equal if triggered or not)

Detail to Byte 7:

- Bit 0 = 1: minimum one alarm of alarm class 0 is active.
- Bit 1 = x: not applied.
- Bit 2 = 1: minimum one alarm of alarm class 1 is active.
- Bit 3 = x: not applied.
- Bit 4 = 1: minimum one alarm of alarm class 2 is active.
- Bit 5 = x: not applied.
- Bit 6 = 1: minimum one alarm of alarm class 3 is active.
- Bit 7 = 1: a CAN fault is active.

Receiving Data

The length of a received message is 8 byte. The following format applies:

Byte 0	Byte 1	Byte 2	Byte 3
Receiving MUX	Desired relay status	Acknowledgment, ignore relay demand, enable Details see below	Not applied

Byte 4	Byte 5	Byte 6	Byte 7
Not applied	Not applied	Not applied	Not applied

Detail to Byte 1:

Bit 0 = 1:	set relay 1
Bit 1 = 1:	set relay 2
Bit $2 = 1$:	set relay 3
Bit 3 = 1:	set relay 4
Bit $4 = 1$:	set relay 5
Bit 5 = 1:	set relay 6
Bit 6 = 1:	set relay 7
Bit 7 = 1:	set relay 8

Detail to Byte 2:

Bit $0 = 1$:	Acknowledgment (applies only at a change from 0 to 1 and only if the message has been ena-
	bled for minimum two cycles.)
Bit 1 = 1	The content of Byte 1 (desired relay status) is ignored at this message. The relays remain in their
	previous status.
Bit $2 = 1$	Enable evaluation of the digital inputs (see configuration.)

Bit 3 to $7 \equiv 0$

Start/Stop of Cyclically Transmission of Data Via CAN Bus

Bus

The ID for a start/stop message is always 0. The length of the message is 2 Bytes.

Byte 0	"1" for start,
	"2" for stop.
Byte 1	Node ID
	or "0" (common command for all units on the bus).

NOTE

Using configuration different start behaviors can be selected.

Discrete Inputs

For each discrete input the following parameters can be configured separately:

- type of action (NO/NC),
- alarm class (control input, class 0, 1, 2 or 3),
- tripping delay,
- release delay,
- enable conditions,
- type of resetting, and
- is the input used as a remote acknowledgment input.

Relay Outputs

For each relay output the following parameters can be configured separately:

- type of action (NO/NC),
- base status (during CAN bus failure),
- is the relay 1 used as a readiness for operation relay (using this setting no other function can be assigned to the relay) and
- is a CAN bus failure is recorded via a relay. (Note: If you want to record time-critical alarms via a relay please use the relays directly contained in the higher level control unit to eliminate delays caused by CAN run-times.)

Configuration Options

The following options exist for configuration. Configuration can be done alternatively via

- the configuration plug using the direct configuration cable DPC and the PC program LeoPC1
- the CAN bus using the D-1 unit

Chapter 5. LEDs And Interfaces

LEDs

The LEDs on the PCB are used to display the status of the unit.

LED A "Readiness for operation" Color: GREEN	This LED indicates that power supply has been applied.
LED B "CAN bus" Color: YELLOW	Is the CAN bus active this LED is flashing.
	This LED indicates an alarm. Is a discrete input triggered and is at least alarm class 1 configured to the input the LED is shining.
LED input 1 to 8	This LED indicates the physical status of the inputs. Is a input set to a high level this

LED input 1 to 8 This LED indicates the **physical status** of the inputs. Is a input set to a high level this Color: YELLOW LED is shining.

Interfaces

The IKD 1 is equipped with two interfaces working with the following baud rates:

٠	Direct configuration	1,200 Baud (8 Bit, no parity, 1 Stop bit) and
٠	CAN bus (CiA)	125, 250 or 500 kBaud configurable using the serial interface.

Direct Configuration (DPC)

Using the configuration interface the unit can be configured directly. Therefore a direct configuration cable DPC is necessary that is connected on one side with the PC/laptop and on the other side at the unit.

For the direct configuration a file is necessary that can be opened using the PC program LeoPC1 (file name: xxxx-xxx-yyy-zz.asm, whereas 'xxxx-xxxx' is the product number, 'yyy' the revision number and 'zz' the language [US = English, DE = German]). The parameters described in chapter "Configuration" beginning page 20 could be modified with this file.

Chapter 6. Configuration

Configuration can be carried out using a PC and the PC program LeoPC1^1 via the serial interface. Additionally configuration can be carried out via the CAN bus. The following baud rates apply:

- Configuration via direct configuration = 1,200 Baud and
- CAN bus configuration: The baud rate corresponds to the baud rate for transmitting and receiving messages. It can be configured using the direct configuration (125, 250, 500 kBaud according CiA).

CAUTION

Do not change parameters during operation.

The parameters can be changed using the PC program LeoPC1 (see separate manual).

NOTE

Please note the list of parameters at the end of this manual.

Basic Data

Software version	Software version
	Version number of the software.
Software number	Software number for identification
	Unique identification number.

CAN Bus Parameter

Following parameters inclusive parameters for the CAN baud rate are configurable using the direct configuration only. With Node ID \neq 0 all other IDs are fixed; they can be calculated from Node ID + Offset (see below). The entry and display into the ID masks are invalid then.

You find the IDs to be used in connection with the GCP depending on the GCP version in the following table:

	GCP up to V4 MDEC coupli	.2xxx (without ng)	GCP from V4.3xxx (possibly with MDEC coupling)		easYgen	
	1 st IKD1	2 nd IKD1	1 st IKD1	2nd IKD1	1 st IKD1	2 nd IKD1
Can Node ID	12	13	12	13	0	0
Can ID receive data	automatic using node	automatic using node	0	0	385	386
Can ID send data	automatic using node	automatic using node	1501	1502	513	514
Can ID receive config	automatic using node	automatic using node	1503	1504	Standard val- ues	Standard val- ues
Can ID send config	automatic using node	automatic using node	1505*	1505*		
Can ID receive upload.	automatic using node	automatic using node	1505*	1505*		
Can ID send upload	automatic using node	automatic using node	1505*	1505*		
Physical state only	No		No		Yes	Yes

NOTE

*) An operation in connection with the MDEC engine control from MTU is possible from this version. In order to prevent a conflict with the MDEC IDs, the IKD may *only* be operated *with the IDs 1501 to 1505*. Therefore, the ID 1505 (dummy) is entered for configuration and upload via CAN by default. If the configuration or the upload via CAN is to be used, the IDs of the respective "remote terminal" have to be entered. Depending on the used IDs, an operation in connection with the MDEC may not be possible anymore!

CAN Node ID	Node ID	0 to 31
[read-only via CAN]	This ID address identifies the CAN Node ID. Is she e ters are valid. Is she unequal to 0 the other IDs are au	
CAN ID receive data	ID for receiving data	0 to 2,047
[read-only via CAN]	On this ID address the IKD 1 will receive data via the For Node ID \neq 0 apply: ID = 224 + Node ID	CAN bus (e.g. close relay).
CAN ID send data	ID for sending data	0 to 2,047
[read-only via CAN]	On this ID address the IKD 1 will send data via the C crete inputs).	AN bus (e.g. status of the dis-
	For Node ID \neq 0 apply: ID = 256 + Node ID	
CAN ID receive con- fiq	ID for receiving parameters	0 to 2,047
[read-only via CAN]	On this ID address the IKD 1 will receive parameters For Node ID \neq 0 apply: ID = 736 + Node ID Default setting: 1505	via the CAN bus.

CAN ID send config	ID for sending parameters	0 to 2,047	
[read-only via CAN]	On this ID address the IKD 1 will send parameters via For Node ID \neq 0 apply: ID = 768 + Node ID Default setting: 1505	the CAN bus.	
CAN ID receive up- load	ID for receiving parameters from a higher level control	0 to 2,047	
[read-only via CAN]	On this ID address the IKD 1 will receive parameters frivia the CAN bus. For Node ID \neq 0 apply: ID = 800 + Node ID Default setting: 1505	rom a higher level control unit	
CAN ID send upload	ID for sending of visualization masks	0 to 2,047	
[read-only via CAN]	On this ID the IKD 1 will send visualization masks to t via the CAN bus. For Node ID \neq 0 apply: ID = 832 + Node ID Default setting: 1505	he higher level control unit	
CAN baudrate	Baudrate	125/250/500 kBaud	
[read-only via CAN]	With this baud rate the CAN communication will be dr Note: If the IKD 1 is working with a GCP please enter Default setting: 250 kBaud Note: If the IKD 1 is operated together with an MDEC, 125 k	250 kBaud here.	
Mux send	MUX for sending of data	0 to 255	
	With the MUX different sending messages can be distiner. Default setting: 1	nguished on the same Identifi-	
Mux receive	MUX for receiving of data	0 to 255	
	With the MUX different receiving messages can be dist fier. Default setting: 1	tinguished on the same Identi-	
Rate to send (s)	Rate of sending	0 to 99.98s	
	The sending rate can be adjusted here. If you set "0" the Default setting: 0.10s	e unit does not send anything.	
	Note (see below): To enable the unit to send messages either the followin	g parameter has to be set to	

S/S Off or S/S+AUT or a start command has to be received via the CAN bus.

Start-up procedure	Handling during start-up	S/S Off / S/S+Aut / S/S-Aut
		luring start-up (cyclical sending of data via the Cyclically Transmission of Data Via CAN Bus on veration with GCP)
	rate data via the CA	the unit it sends with the configured sending baud N bus. Interruption of sending is not possible.
	-	the unit it sends with the configured sending baud N bus. Interruption and re-start of sending is pos-
	-	tarted after this has been enabled through a CAN can be interrupted and re-start as often as neces-
	 Note: To enable the unit to send data ured (see above)! 	a a sending baud rate (≥ 20 ms) has to be config-
		nd after applying the power supply. excepted one second after receiving of the message,
	If you configure via the CAN bus 0no start/stop	
	1start/stop with auto 2start/stop without au	
CAN error delay (s)	Triggering time for CAN faults (tin	neout) 0 to -99.98 s
	unit did not receive data within th relay has been configured (see fur the rest of the relays would not be (depends on configuration). Addit	an CAN fault would not lead to an alarm. If the is configured limit a CAN fault is recognized. If a ther below) this would be triggered. The status of changed or the relays would be set to base setting ionally in Byte 7 of the CAN sending message a ows this message can be received by another CAN
	Note: It is not allowed to lower this time unit.	e under the sending baud rate of the corresponding
CAN error	CAN alarm acknowledgment	YES/NO
self-acknowledgment	YES self acknowledgme	f acknowledgment for CAN alarms. nt is canceled right after the CAN fault has been
	NOno self acknowledg The alarm message	ment is canceled right after the CAN fault has been wledgment has been received.
	Note: Acknowledgment can be done via configured).	the CAN bus or the configured discrete input (if

Discrete Inputs

Phys. state	Physical state only	YES/NO
	self acknowledgement and ren setting has to be selected whe YES Only the physical state of the tings under function NC, tripp self acknowledgement and ren	
Function NC	Туре	YES/NO
[x = 1 to 8]	The discrete inputs can be triggered via a Normanitor a wire break. A positive or negative NONO input The discrete input triggers if vYESNC input The discrete input triggers if normalized to the discrete to the discrete input triggers if normalized to the discrete to t	e voltage difference can be applied. voltage is applied.
Tripping delay (s)	Triggering delay	0.00 to 99.98 s
Tripping delay (s) [x = 1 to 8]	Triggering delay The triggering of a discrete input can be del "0" the delay is smaller than 20 ms. To trigg for at least the time set here. If the voltage is delay is re-started. Note: This delay is related to internal calculation to coupled to the CAN bus reacts additionally through the CAN bus. Therefore time critical rectly to the control unit GCP.	ayed by an individual time. If you enter ger the alarm the input has to be applied sn't applied during the whole period the times of the IKD 1. The time until a unit depends on the runtime of the message
	The triggering of a discrete input can be del "0" the delay is smaller than 20 ms. To trigg for at least the time set here. If the voltage is delay is re-started. Note: This delay is related to internal calculation t coupled to the CAN bus reacts additionally through the CAN bus. Therefore time critical	ayed by an individual time. If you enter ger the alarm the input has to be applied sn't applied during the whole period the times of the IKD 1. The time until a unit depends on the runtime of the message
[x = 1 to 8]	The triggering of a discrete input can be del "0" the delay is smaller than 20 ms. To trigg for at least the time set here. If the voltage is delay is re-started. Note: This delay is related to internal calculation t coupled to the CAN bus reacts additionally through the CAN bus. Therefore time critical rectly to the control unit GCP.	ayed by an individual time. If you enter ger the alarm the input has to be applied sn't applied during the whole period the times of the IKD 1. The time until a unit depends on the runtime of the message al messages should always been wired di- 0.00 to 99.98 s by an individual time. If you enter "0" alarm the input has not to be applied for

Triggering of the input can be reset after this time.

Remote enabling	Enable		YES/NO
[x = 1 to 8]	(e.g. at the Bit 2) in the NO	GCP the delayed engine monitor e receiving message is prepared. Evaluation is done independe Evaluation is done following	figured as depended on a enable signal ing). Therefore the enable Bit (Byte 2, nt of the enable Bit. the enable Bit has been set via the CAN h setting the enable Bit and the discrete
		Bit does not affect the 8 status L e discrete inputs.	EDs; they always indicate the physical
Alarm class	Alarm class	/ modus	Control / 0 / 1 / 2 / 3
	input with a Note: Control inp put does no Using confi	alarm class ≥ 1 has been triggered ut should be configured to self a t trigger an alarm class. Iguration via CAN bus (e. g. with modus (04) has to be entered th	an alarm class (control 0, 1, 2, 3). If one d the alarm LED (LED "C") lights up. cknowledgment. Applying a control in- n the D-1) the alarm class can not be set nat refers to the corresponding alarm
Self acknowledgment [x = 1 to 8]	NO	weldgment for every input can b no self acknowledgment (for Triggering is delayed after the the reset delay and if a acknow self-acknowledgment	operation with GCP) e input signal has be reset for the time of

Note:

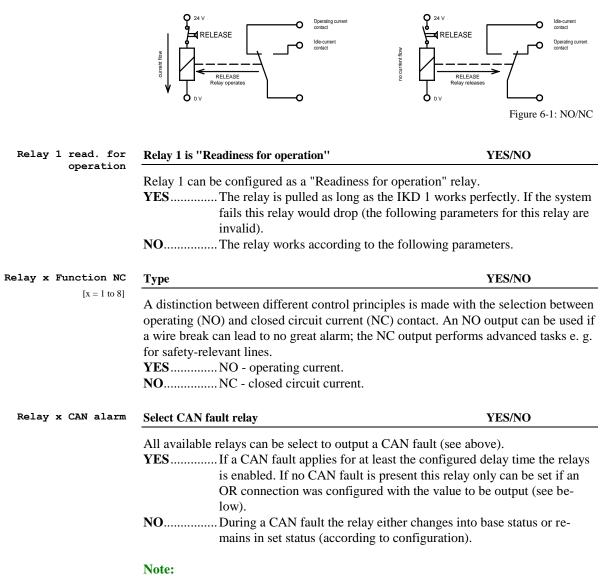
Setting YES has to be chosen for control inputs.

Remote acknowledg	Select input for acknowledgment	YES/NO
[x = 1 to 8]		
	Any of the discrete inputs can be set as the acknow	ledgment input. If a acknowledg-
	ment input is set all triggering are reset if the input	signal is reset for at least the con-
	figured reset delay of each input. If a triggering del	lay is configured for the acknowl-
	edgment input this time has to be over until a acknowledge	owledgment is accepted.

NO......The input is no acknowledgment input. (for operation with GCP)

Note: If an input is configured as an acknowledgment input he also should be configured to self acknowledgment and alarm class "control input".

YESThe input is an acknowledgment input.


Relay Outputs

NOTE

- Operating current (NO): After the tripping, the relay picks up, i.e. current is flowing through the coil while in operate condition. In the event of a loss of the power supply, the status of the relay is not changed and no tripping occurs. In this case, the readiness for operation of the relay should be monitored.
- Closed circuit current (NC): After the tripping, the relay drops off, i.e. current is flowing through the coil while in release condition. The relay is picked up while in release condition (= no tripping). In the event of a loss of the power supply, the status of the relay is changed and a tripping occurs.

Above configured type is taken into account!

YES/NO
he relay configured as a CAN fault If a CAN fault is present this relay It can be reset if the CAN fault is is present. It can be reset if the
YES/NO
his is additionally enabled below. thas been acknowledged (ac- the self acknowledgment, via the gured discrete input). status. et status.
YES/NO
bove configured base setting. N fault relay) are changed into delay time. N fault relays) remain in the status

Above configured type is taken into account!

Chapter 7. Commissioning

DANGER - HIGH VOLTAGE

When commissioning the unit, please observe the five safety rules applying to the handling of live equipment. Make sure that you know how to provide first aid in current-related accidents and that you know where the first-aid kit and the nearest telephone are. Never touch any live components of the system or on the back of the system:

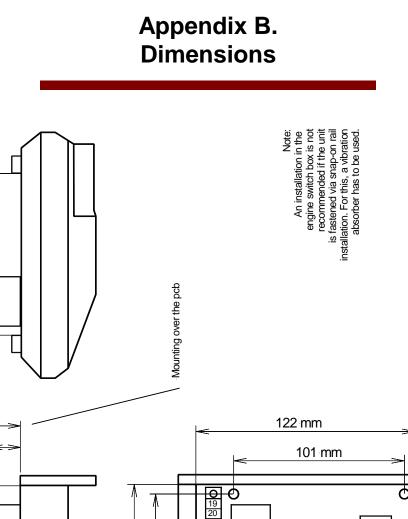
DANGER TO LIVE

CAUTION

Only a qualified technician may commission unit. The "EMERGENCY-OFF" function must be safely working prior to the commissioning, and must not depend on the unit.

Step-by-step instruction

- 1. Following check-out if all inputs, outputs, and the CAN bus have been wired correct power supply can be applied.
- 2. If a configuration/change of pre-specified values should be necessary please follow the instructions for configuration in chapter "Configuration" at page 20.
- 3. Parameters of the higher level control unit have to be adjusted. Therefore please note the manual of the used control.


Appendix A. Wiring Diagram

2002-11-07 | IKD 1 Wiring Diagram ikd1ww-4502

Figure 7-1: Wiring diagram

2003-01-08 | IKD 1 Dimensions ikd1 ww-0203-ab.skf

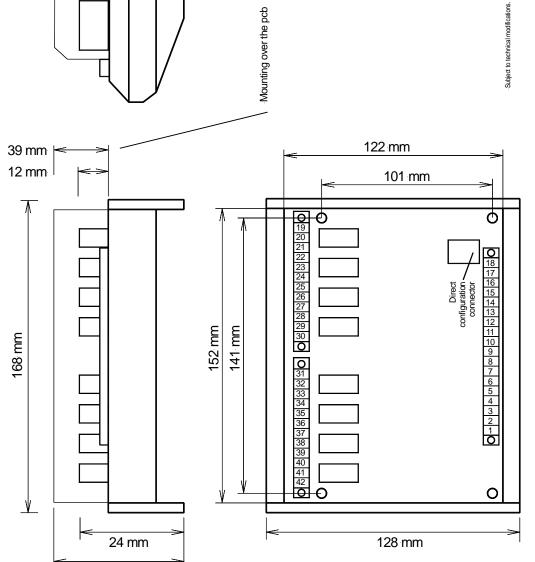


Figure 7-2: Dimensions

51 mm

Appendix C. Technical Data

An	nbient variables		
-	Power supply (V _{aux})		
-	Intrinsic consumption		
-	Ambient temperature for storage		
-	Ambient temperature for storage		
-	Ambient temperature for operation		
-	Ambient humidity		95 %, not condensing
Dis	screte inputs		galvanically isolated
-	Input range (V _{Cont., dig.input})		Rated voltage 12/24 Vdc (6 to 32 Vdc)
-	Input resistance		approx. 6.8 kΩ
Ro	lay outputs		notantial frag
-	Contact material AgCdO		potential free
_	General purpose (GP) (V _{Cont, relay output})		
	Concrete purpose (Cr) (* Cont, relay output)	AC	2.00 Aac@250 Vac
			2.00 Adc@24 Vdc
			0.36 Adc@125 Vdc
			0.18 Adc@250 Vdc
-	Pilot duty (PD) (V _{Cont, relay output})		
	• • • • • • • • • • • • • • • • • • • •	AC	B300
		DC	1.00 Adc@24 Vdc
			0.22 Adc@125 Vdc
			0.10 Adc@250 Vdc
Int	erface, Service interface		
-	Version RS-232, USB		
-	Signal level		5 V
			S-232 P/N 5417-557, DPC-USB P/N 5417-1251
Int	erface, CAN		colvenically isolated
ш	Insulation voltage (continuously)		
-	Insulation test voltage (≤ 5 s)		
_	Version CAN-Bus		1,000 vac
-	Internal line termination		not available
Ho	using	C"1	11 100
-	Extrusion profile for fastening onto a DIN rail/C Dimensions		
-	Dimensions		168 × 128 × 51 mm
	Vibration absorber		M4×6
-	Dimensions		
-	Dimensions		152 × 122 × 52 mm
_	Wiring Screw-plug terminals 2.5 mm ²		
			Recommended locked torque 0.5 Nm
			use 60/75 °C copper wire only
			use class 1 wire only or equivalent
-	Weight approx. 360 g		

Vibration

V I		
-	Frequency range - sine sweep -	5 Hz to 100 Hz
-	Acceleration	4 G
-		EN 60255-21-1 (EN 60068-2-6, Fc), Lloyd's Register, Vibration Test2, SAEJ1455 Chassis Data
_		10 Hz to 500 Hz
		0.015 G ² /Hz
-		1.04 Grms
-		
-	Standards	MIL-STD 810F, M514.5A, Cat.4, Truck/Trailer tracked-restrained
		Cargo, Fig. 514.5-C1
Sh	ock	
-	Shock	40 G, Saw tooth pulse, 11 ms
-	Standards	EN 60255-21-2, MIL-STD 810F, M516.5, Procedure 1
Pr	otection	
-	Protection type	IP 20
-	EMC test (CE)	tested according to applicable EN guidelines
-		
	- Jr	

Appendix D. List of Parameters

Version

Project

Item number

Date

Option	Parameter	Range	Standard setting			omer ting
BASIC	CDATA					
	Software version	-	-			
	Software number	-	-			
CANE	BUS PARAMETERS				•	
0.1.1				from V	/1.0001	
	Can Node ID	0 to 31	12	0	1.0001	
	Can ID receive data	0 to 2,047	236	1501		
	Can ID send data	0 to 2,047	268	1503		
	Can ID receive config	0 to 2,047	748	1505		
	Can ID send config	0 to 2,047	780	1505		
	Can ID receive upload	0 to 2,047	812	1505		
	Can ID send upload	0 to 2,047	845			1
	CAN baudrate	125/250/500 kBaud	250 k			1
	Mux send	0 to 255	230 1			
	Mux receive	0 to 255	1			
	Rate to send (s)	0.00 to 99.98 s	0.1	ls		
	Start-up procedure	S/S Off	S/S		□ S/S Off	□ S/S Off
		S/S+Aut			\Box S/S+Aut	\Box S/S+Aut
		S/S-Aut			□ S/S-Aut	□ S/S-Aut
CANE	BUS ERROR					•
	CAN error delay (s)	0.00 to 9.98 s	2.5	5 8		
	CAN error self-acknowledg.	YES/NO	YI	ES		
DISCH	RETE INPUTS				ł	
	Physical state only	YES/NO	N	0	ΠΥΠΝ	
	Function NC	YES/NO	N			
110.1	Tripping delay (s)	0.00 to 99.98 s	0.2	-		
	Enable delay (s)	0.00 to 99.98 s	0.2			
	Remote enabling	YES/NO	N			
	Alarm class	Control/0/1/2/3	(-		
	Self acknowledgment	YES/NO	N	0		
No.1	Remote acknowledgment	YES/NO	N	-		
No.2	Function NC	YES/NO	N	0		
	Tripping delay (s)	0.00 to 99.98 s	0.2	-		
	Enable delay (s)	0.00 to 99.98 s	0.2			
	Remote enabling	YES/NO	N			
	Alarm class	Control/0/1/2/3	(-		
	Self acknowledgment	YES/NO	N	0		
No.2	Remote acknowledgment	YES/NO	N	0		
No.3	Function NC	YES/NO	N	0		
	Tripping delay (s)	0.00 to 99.98 s	0.2	-		
	Enable delay (s)	0.00 to 99.98 s	0.2			1
	Remote enabling	YES/NO	N			
	Alarm class	Control/0/1/2/3	()		
	Self acknowledgment	YES/NO	N	0		
No.3		YES/NO	N			

Option	Parameter	Range	Standard setting	Customer setting	
DISCI	RETE INPUTS		-		
	Function NC	YES/NO	NO		
110.4	Tripping delay (s)	0.00 to 99.98 s	0.20 s		
	Enable delay (s)	0.00 to 99.98 s	0.20 s		
	Remote enabling	YES/NO	NO		ΔΥ ΔΝ
	Alarm class	Control/0/1/2/3	0		
	Self acknowledgment	YES/NO	NO		ΠΥΠΝ
No.4	Remote acknowledgment	YES/NO	NO	$\Box Y \Box N$	\Box Y \Box N
No.5	Function NC	YES/NO	NO	$\Box Y \Box N$	ΠΥΠΝ
	Tripping delay (s)	0.00 to 99.98 s	0.20 s		
	Enable delay (s)	0.00 to 99.98 s	0.20 s		
	Remote enabling	YES/NO	NO	$\Box Y \Box N$	$\Box Y \Box N$
	Alarm class	Control/0/1/2/3	0		
	Self acknowledgment	YES/NO	NO		
No.5	-	YES/NO	NO		
No.6	Function NC	YES/NO	NO		$\Box Y \Box N$
	Tripping delay (s)	0.00 to 99.98 s	0.20 s		
	Enable delay (s) Remote enabling	0.00 to 99.98 s YES/NO	0.20 s NO		
	Alarm class	Control/0/1/2/3	0		
	Self acknowledgment	YES/NO	NO		
	Remote acknowledgment	YES/NO	NO		
No.7	Function NC	YES/NO	NO		
10.7	Tripping delay (s)	0.00 to 99.98 s	0.20 s		
	Enable delay (s)	0.00 to 99.98 s	0.20 s		
	Remote enabling	YES/NO	NO		
	Alarm class	Control/0/1/2/3	0		
	Self acknowledgment	YES/NO	NO		ΠΥΠΝ
No.7	Remote acknowledgment	YES/NO	NO	Δ Υ Δ Ν	ΠΥΠΝ
No.8	Function NC	YES/NO	NO		
	Tripping delay (s)	0.00 to 99.98 s	0.20 s		
	Enable delay (s)	0.00 to 99.98 s	0.20 s		
	Remote enabling	YES/NO	NO	$\Box Y \Box N$	$\Box Y \Box N$
	Alarm class	Control/0/1/2/3	0		
	Self acknowledgment	YES/NO	NO		
	Remote acknowledgment	YES/NO	NO	$\Box Y \Box N$	$\Box Y \Box N$
RELA	Y OUTPUTS	VECNO	NO		
	Relay 1 read. for operat.	YES/NO	NO		
	Relay 1 Function NC Relay 2 Function NC	YES/NO	NO		
	Relay 3 Function NC	YES/NO YES/NO	NO NO		
	Relay 4 Function NC	YES/NO	NO		
	Relay 5 Function NC	YES/NO	NO		
	Relay 6 Function NC	YES/NO	NO		
	Relay 7 Function NC	YES/NO	NO		
	Relay 8 Function NC	YES/NO	NO		
	Relay 1 CAN alarm	YES/NO	NO	ΠΥΠΝ	ΠΥΠΝ
	Relay 2 CAN alarm	YES/NO	NO		
	Relay 3 CAN alarm	YES/NO	NO	Δ Υ Δ Ν	ΠΥΠΝ
	Relay 4 CAN alarm	YES/NO	NO	\Box Y \Box N	\Box Y \Box N
	Relay 5 CAN alarm	YES/NO	NO		\Box Y \Box N
	Relay 6 CAN alarm	YES/NO	NO		
	Relay 7 CAN alarm	YES/NO	NO		
	Relay 8 CAN alarm	YES/NO	NO		$\Box Y \Box N$
	CAN alarm relay - log. OR	YES/NO	NO	$\Box Y \Box N$	$\Box Y \Box N$
	Relay 1 basic set. active	YES/NO	NO		
	Relay 2 basic set. active	YES/NO	NO		
	Relay 3 basic set. active	YES/NO	NO		
	Relay 4 basic set. active	YES/NO	NO		
	Relay 5 basic set. active	YES/NO	NO		
	Relay 6 basic set. active	YES/NO	NO		
	Relay 7 basic set. active Relay 8 basic set. active	YES/NO YES/NO	NO NO		
		YES/NO			
	Basic setting	YES/NO	NO	$\Box Y \Box N$	$\Box Y \Box N$

Appendix E. Service Options

Product Service Options

The following factory options are available for servicing Woodward equipment, based on the standard Woodward Product and Service Warranty (5-01-1205) that is in effect at the time the product is purchased from Woodward or the service is performed. If you are experiencing problems with installation or unsatisfactory performance of an installed system, the following options are available:

- • Consult the troubleshooting guide in the manual.
- Contact Woodward technical assistance (see "How to Contact Woodward" later in this chapter) and discuss your problem. In most cases, your problem can be resolved over the phone. If not, you can select which course of action you wish to pursue based on the available services listed in this section.

Returning Equipment For Repair

If a control (or any part of an electronic control) is to be returned to Woodward for repair, please contact Woodward in advance to obtain a Return Authorization Number. When shipping the unit(s), attach a tag with the following information:

- • name and location where the control is installed;
- name and phone number of contact person;
- complete Woodward part numbers (P/N) and serial number (S/N);
- description of the problem;
- • instructions describing the desired type of repair.

CAUTION

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, *Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.*

Packing A Control

Use the following materials when returning a complete control:

- protective caps on any connectors;
- • antistatic protective bags on all electronic modules;
- • packing materials that will not damage the surface of the unit;
- • at least 100 mm (4 inches) of tightly packed, industry-approved packing material;
- • a packing carton with double walls;
- • a strong tape around the outside of the carton for increased strength.

Return Authorization Number RAN

When returning equipment to Woodward, please telephone and ask for the Customer Service Department in Stuttgart [+49 (0) 711 789 54-510]. They will help expedite the processing of your order through our distributors or local service facility. To expedite the repair process, contact Woodward in advance to obtain a Return Authorization Number, and arrange for issue of a purchase order for the unit(s) to be repaired. No work can be started until a purchase order is received.

NOTE

We highly recommend that you make arrangement in advance for return shipments. Contact a Woodward customer service representative at +49 (0) 711 789 54-510 for instructions and for a Return Authorization Number.

Replacement Parts

When ordering replacement parts for controls, include the following information:

- • the part numbers P/N (XXXX-XXX) that is on the enclosure nameplate;
- • the unit serial number S/N, which is also on the nameplate.

How To Contact Woodward

Please contact following address if you have questions or if you want to send a product for repair:

Woodward GmbH Handwerkstrasse 29 70565 Stuttgart - Germany

 Phone:
 +49 (0) 711 789 54-510
 (8.00 - 16.30 German time)

 Fax:
 +49 (0) 711 789 54-101

 E-mail:
 stgt-info@woodward.com

For assistance outside Germany, call one of the following international Woodward facilities to obtain the address and phone number of the facility nearest your location where you will be able to get information and service.

Facility	Phone number		
USĂ	+1 (970) 482 5811		
India	+91 (129) 409 7100		
Brazil	+55 (19) 3708 4800		
Japan	+81 (476) 93 4661		
The Netherlands	+31 (23) 566 1111		

You can also contact the Woodward Customer Service Department or consult our worldwide directory on Woodward's website (**www.woodward.com**) for the name of your nearest Woodward distributor or service facility. [For worldwide directory information, go to **www.woodward.com/ic/locations**.]

Engineering Services

Woodward Industrial Controls Engineering Services offers the following after-sales support for Woodward products. For these services, you can contact us by telephone, by e-mail, or through the Woodward website.

- Technical support
- Product training
- Field service during commissioning

Technical Support is available through our many worldwide locations, through our authorized distributors, or through GE Global Controls Services, depending on the product. This service can assist you with technical questions or problem solving during normal business hours. Emergency assistance is also available during non-business hours by phoning our toll-free number and stating the urgency of your problem. For technical engineering support, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference technical support.

Product Training is available on-site from several of our worldwide facilities, at your location, or from GE Global Controls Services, depending on the product. This training, conducted by experienced personnel, will assure that you will be able to maintain system reliability and availability. For information concerning training, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *customer training*.

Field Service engineering on-site support is available, depending on the product and location, from our facility in Colorado, or from one of many worldwide Woodward offices or authorized distributors. Field engineers are experienced on both Woodward products as well as on much of the non-Woodward equipment with which our products interface. For field service engineering assistance, please contact us via our toll-free or local phone numbers, e-mail us, or use our website and reference *field service*.

Technical Assistance

If you need to call for technical assistance, you will need to provide the following information. Please write it down here before calling:

Contact

Your company			
Your name			
Phone number			
Fax number			
Control (see name plat	0)		
		REV:	
Unit type	IKD 1		
Serial number	S/N		
Description of your pro	oblem		

Please be sure you have a list of all parameters available. You can print this using LeoPC1. Additionally you can save the complete set of parameters (standard values) and send them to our Service department via e-mail.

We appreciate your comments about the content of our publications. Please send your comments to: <u>stgt-documentation@woodward.com</u> Please include the manual number from the front cover of this publication.

Woodward GmbH Handwerkstrasse 29 - 70565 Stuttgart - Germany Phone +49 (0) 711 789 54-510 • Fax +49 (0) 711 789 54-101 stgt-info@woodward.com

Homepage

http://www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).