

OptionSC09/SC10 Engine CAN Bus

Functional Description GCP-30 from Software Version 4.3046

Manual 37382

WARNING

Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

CAUTION

To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a
 grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

http://www.woodward.com/pubs/current.pdf

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:

http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING

Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION

Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE

Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward All Rights Reserved.

Revision History

Rev.	Date	Editor	Changes
NEW	07-02-07	ТР	Release based on 37313B

Contents

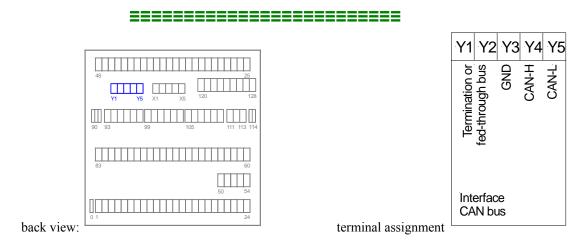
CHAPTER 1. GENERAL INFORMATION	4
CHAPTER 2. OPTION SC09/SC10	5
Connection	5
Configuration	
IKD 1 - Digital Extension Card	
ST 3 - Lambda Controller (not with Option SC09)	10
Coupling Engine Control Units via CAN	13
ECUs with CAN Bus Connection According to 'SAE J1939' Protocol	16
J1939 Standard ECU	17
DEUTZ EMR2 J1939	20
SCANIA S6 J1939	23
Volvo EMS 2 J1939	
mtu ADEC J1939	
J1939 Relay Manager Functions	34
Send Telegram Guidance Bus for J1939 ECU Data	
Engine Control 'MDEC'	
MDEC Connection	
Connection to GCP	
Set point Specification Via Three-Step Controller	
Set point Specification Via Analog Controller	
Set point Specification Via CAN	
Engine Bus Visualization Via LeoPC1 (MDEC and J1939)	
CAN Bus Connection via A CAN Card or an USB to CAN Adapter to LeoPC1	
CAN Bus Connection via A GW 4 and the RS-232 Interface to LeoPC1	42
APPENDIX A. LIST OF PARAMETERS	44

Chapter 1. General Information

CAUTION

This brief manual can only be used together with the complete manual.

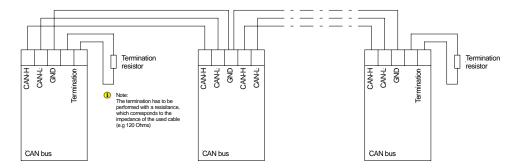
This manual describes the following options:


- **Option SC09:**
 - mtu MDEC or
 - Deutz EMR 2 or
 - Standard ECU viar SAE J1939
 - and Woodward IKD 1 (unit 1; details in manual GR37135)
 - and Woodward IKD 1 (unit 2; details in manual GR37135)
 - Monitoring of ECU measured values
 - Control of Scania S6 via J1939
 - Control of Volvo EMS2 via J1939
 - Control of mtu ADEC via J1939
 - Control via J1939 standard messages
- Option SC10 (additionally to SC09) Woodward ST 3 (details in manual GR37112)

The **Options SC09**, and **SC10** allows to operate the above mentioned devices at the CAN engine bus. It is not possible to operate 2 engine controls at the same time.

The connected devices have to be enabled using the configuration.

Chapter 2. Option SC09/SC10


Connection

Y1	Y2	Y3	Y4	Y5	CAN bus (engine bus)
[1] CAN-H	[1] CAN-L	GND	CAN-H	CAN-L	CAN bus
X1	X2	X3	X4	X5	CAN bus (guidance bus)
F13 1	1 6 6 1 4	1.1.0.1	11 / 1		

[1]...may be used for feeding through the CAN bus to other participants or for connecting the termination reisitor.

Please note that the CAN bus line has to be terminated with a termination resistor at both ends! The following figure illustrates the structure of a CAN bus.

Configuration

Configure	Configuration of the engine bus	YES/NO		
engin.bus JA	To ensure a fast proceeding in the extensive configuration screens, different parameter groups are grouped in blocks. A setting to "YES" or "NO" has no influence on the fact whether a control, monitoring, etc. is performed or not. The entry has only the following effects:			
	 YESThe configuration screens of the following blocks are displayed and can either be enabled ("Select" button) or parameter changes can be performed ("Cursor→", "Digit[↑]" or "Select" buttons). A decision whether the parameters are processed will not be made. NOThe parameters of the following block are skipped, i.e. they are not displayed and cannot be changed. 			
CAN baud rate	Baud rate of the engine CAN bus	100/125/250/500 kBaud		
000kBd	Baud rate of the engine CAN bus. Please note that CAN bus have to be operated with the same baud r The default value is 250 kBaud.			

(If an MDEC unit is to be connected, 125 kBaud is to be configured here.)

IKD 1 - Digital Extension Card

NOTE

The discrete inputs of the IKD 1 can only be configured using the PC software LeoPC1. Please take information about the IKD 1 functions and configuration from the Woodward manual 37135.

Parameter

IKDx on bus	IKD 1.x on bus	YES/NO
NO [x = 1/2]	 YES	neter is set 1s, an

Note to IKD 1 interface error - The "interface error Y1Y5" with alarm class 1 is triggered, if the GCP does not receive a message from the IKD 1 for about 5 s. Moreover, the relay with the parameter 134 (or 135) deenergizes (or energizes; depending on programming). The relay energizes again as soon as the GCP receives data from the IKD 1 again. The message "interface error Y1Y5" is only cleared with an acknowledgement.

IKD 1 Relay Outputs

The parameters are at the end of the GCP configuration file. Please note that you may have to perform additional settings directly at the IKD 1 via direct configuration if necessary. Please observe the IKD 1 manual about this.

Assignment $\{x\}$.	Configuration of the relay outputs on the IKD 1.y
relay on IKD{y} [x = 18] / [y = 1/2]	The relay $\{x\}$ on the IKD 1. $\{y\}$ energizes if the configured logical condition is fulfilled.

Example: Relay 2 on the IKD 1.2

	Configuration of the 2 nd relay on the IKD 1.2
on IKD2	
	The relay 2 on the IKD 1.2 energizes if the configured logical condition is fulfilled.

IKD 1 Discrete Inputs

The parameters are at the end of the GCP configuration file. Please note that you may have to perform additional settings (e.g. normally open/closed, delay, alarm class, etc.) directly at the IKD 1 via direct configuration if necessary. Please observe the IKD 1 manual about this.

Error text DI{x}	Configuration of the IKD 1.y alarm texts
IKD $\{y\}$ (term. $\{z\}$)	
[x = 18] / [y = 1/2] / [z = 512]	The discrete input $\{x\}$ (term. $\{y\}$) on the IKD 1. $\{z\}$ displays the text configured
	here at the GCP display.

Example: Discrete input 5 on the IKD 1.1

Error text DI5 IKD1	Configuration of the IKD 1.1 alarm texts
(term. 9)	The discrete input 5 (term. 9) on the IKD 1.1 displays the text configured here at the GCP display.

Relay Manager

No.	Outputs	Comment
98	IKD 1.[1] - discrete input [1]	
99	IKD 1.[1] - discrete input [2]	
100	IKD 1.[1] - discrete input [3]	
101	IKD 1.[1] - discrete input [4]	
102	IKD 1.[1] - discrete input [5]	
103	IKD 1.[1] - discrete input [6]	
104	IKD 1.[1] - discrete input [7]	
105	IKD 1.[1] - discrete input [8]	
106	IKD 1.[2] - discrete input [1]	
107	IKD 1.[2] - discrete input [2]	
108	IKD 1.[2] - discrete input [3]	
109	IKD 1.[2] - discrete input [4]	
110	IKD 1.[2] - discrete input [5]	
111	IKD 1.[2] - discrete input [6]	
112	IKD 1.[2] - discrete input [7]	
113	IKD 1.[2] - discrete input [8]	
134	Communication with IKD1.[1] okay	
135	Communication with IKD1.[2] okay	

Send Telegram 'Guidance Bus of the GCP-30'

MUX	No.	Content (words)	Unit	Comment	
Μ	Z				
•••					
4/1	13	IKD 1 alarms		Bit 15 = 1	IKD 1.[1] - discrete input [8]
				Bit 14 = 1	IKD 1.[1] - discrete input [7]
				Bit 13 = 1	IKD 1.[1] - discrete input [6]
				Bit 12 = 1	IKD 1.[1] - discrete input [5]
				Bit 11 = 1	IKD 1.[1] - discrete input [4]
				Bit 10 = 1	IKD 1.[1] - discrete input [3]
				Bit 9 = 1	IKD 1.[1] - discrete input [2]
				Bit 8 = 1	IKD 1.[1] - discrete input [1]
				Bit 7 = 1	
				Bit $6 = 1$	
				Bit 5 = 1	
				Bit 4 = 1	
				Bit 3 = 1	
				Bit 2 = 1	
				Bit 1 = 1	
				Bit $0 = 1$	
•••	•••				
22/2	68	IKD 1.[2] alarms		Bit 15 = 1	IKD 1.[2] - discrete input [1]
				Bit 14 = 1	IKD 1.[2] - discrete input [2]
				Bit 13 = 1	IKD 1.[2] - discrete input [3]
				Bit 12 = 1	IKD 1.[2] - discrete input [4]
				Bit 11 = 1	IKD 1.[2] - discrete input [5]
				Bit $10 = 1$	IKD 1.[2] - discrete input [6]
				Bit 9 = 1	IKD 1.[2] - discrete input [7]
				Bit 8 = 1	IKD 1.[2] - discrete input [8]
				Bit 7 = 1	
				Bit $6 = 1$	
				Bit 5 = 1	
				Bit $4 = 1$	
				Bit 3 = 1	
				Bit 2 = 1	
				$\begin{array}{r} \text{Bit } 2 &= 1 \\ \text{Bit } 1 &= 1 \end{array}$	
				Bit 1 = 1 Bit 0 = 1	
				BIU = I	
•••	•••				

ST 3 - Lambda Controller (not with Option SC09)

i

The ST 3 functions can only be configured using the PC software LeoPC1. Please take information about the ST 3 functions from the Woodward manual 37112.

Parameter

NOTE

ST3 on bus		ST 3 on engine bus	YES/NO
	NO	YESThe ST 3 functions are activated. Moreover, it is not the ST 3 is connected to the engine bus. If this part YES, but the ST 3 is not connected to the CAN but error will be triggered in the GCP.	ameter is set to
		NO The ST 3 functions are locked and the communica not monitored.	ation to the ST 3 is

Note: Ensure that the ST 3 controller is configured correctly. Enter 6 as **Node-ID** there.

Note to ST 3 interface error - The "interface error Y1Y5" with alarm class 1 is triggered, if the GCP does not receive a message from the ST 3 for about 5 s. The ST 3 display values are overwritten with "0". Moreover, the relay with the parameter 136 de-energizes (or energizes; depending on programming). If the GCP receives data from the ST 3 again, the relay energizes again, and the ST 3 values are displayed again. The message "interface error Y1Y5" is only cleared with an acknowledgement.

(If an interface error Y1Y5 is triggered, which has been caused by e.g. a faulty IKD communication, the ST 3 values will still be displayed correctly.)

Functional Description GCP-30 with ST 3 Coupling

Displays

Three ST 3 values are transferred to the GCP and displayed in the GCP online display as follows: Lambda set value and actual values in screen: "L: Se0,00 Ac0,00" Actuator position in % in screen: "P.actu: 000,00%"

Error message lambda probe

If the ST 3 detects a malfunction of the lambda probe, the error message 'Lambda probe' appears with alarm class 1 in the display.

GCP commands to the ST 3 controller

The GCP sends the following commands to the ST 3 controller depending on the respective operation state:

- Leave stop position
 This command is sent to the ST 3 controller as long as the GCP controls the auxiliary drives (pre-run and post-run auxiliary drives).
 (In operation mode manual, the auxiliary drives are always controlled and therefore, the message "Leave stop position" is always sent.)
- Release lambda control This command is sent to the ST 3 controller as long as the reply "GLS closed" is present at the GCP.
- Initialization of the stepper motor This command is sent to the ST 3 controller for approx. 200ms as soon as the auxiliary drives pre-run is started.

Additionally, the GCP sends the actual value of the generator real power for the control to the ST 3 controller.

Manual adjustment of the actuator position:

The actuator position can be adjusted manually using the higher/lower buttons of the GCP. To do this, the GCP has to be in manual operation mode and the actuator position display has to be visible.

Relay Manager

No.	Outputs	Comment
129	Error lambda probe (via CAN bus)	
130	Activate lambda probe	
136	Communication with ST 3 okay	

Send Telegram 'Guidance Bus of the GCP-30'

MUX	No.	Content (words)	Unit	Comment
-----	-----	-----------------	------	---------

 19/3	 60	Internal alarms 7		Bit 15 = 1	
19/5	00				
				Bit 14 = 1	
				Bit 13 = 1	Alarm ST3: lambda probe
				Bit 12 = 1	
				Bit 11 = 1	
				Bit 10 = 1	
				Bit 9 = 1	
				Bit 8 = 1	
				Bit 7 = 1	
				Bit 6 = 1	
				Bit 5 = 1	
				Bit 4 = 1	
				Bit 3 = 1	
				Bit 2 = 1	
				Bit 1 = 1	
				Bit 0 = 1	
23/1	70	Lambda set value	× 100		
23/2	71	Lambda actual value	× 100		
23/3	72	Actuator position	× 0,01 %		
•••		····			

Coupling Engine Control Units via CAN

The abbreeviation ECU is often used for Engine Control Unit in the following.

Overview Table

NOTE

A simultaneous CAN bus coupling of the MDEC and J1939 components is not possible.

Description	Displays /	Messages	Description						mtu
	German	English	SPN ^{/#6}	Std. *	Deutz EMR2	Scania S6	Volvo EMS2	mtu ADEC	MDEC
Visualization									
Display: engine speed [1/min]	Mot.Drehz. 0000	Eng.speed 0000	190	✓	✓	✓	✓	✓	✓
Display: oil pressure /#4	Öldruck 00,00b	Oil pres. 00.00b	100	✓	✓	√	√	✓	✓
Display: Alarm codes #7	Fehlercodes 0000	Fail.codes 0000		✓ /#5	✓ /#5		√	√	✓
Display: ECU operating hours	Betrieb: 00000h	running 00000h	247	✓	✓	✓	√	√	✓
Display: coolant temperature /#4	Kühlmit. 000,0C	Coolant 000.0C	110	✓ /#1	✓	✓	✓	✓	✓
Display: oil temperature ^{#4}	Öl 000,0C	Oil 000.0C	175	✓		√	√	✓	✓
Display: fuel temperature /#4	Kraftst. 000,0C	Fuel ü000.0C	174	✓ /#1	✓	√		✓	✓
Display: speed reply	Feedb.Drz. 0000	Feedb.speed 0000							✓
Display: coolant level	Kühlm.Stand 000%	Cool. level 000%	111	✓	✓	√			
Display: fuel consumption	Verbr. 000 1/h	Rate 0000.0 1/h	183	✓	✓	√	√		
Alarm: ECU defective	AL ECU defekt	AL ECU defect							✓
Alarm: coolant temperature	Kühlmitteltemp.	Coolant temp.				√			✓
Alarm: ST coolant temperature	ST Kühlmitt.temp	ST Coolant temp.			✓				✓
Alarm: oil temperature exceeded	Öltemp. zu hoch	HI Oil temp.							✓
Alarm: SD coolant level	SD Kühlm.stand	SD Coolant level	111	✓	✓	✓			✓
Alarm: SD coolant charging air	SDKühlm.Ladeluft	SD Cool.chrg.air							✓
Alarm: ST oil level	ST Ölstand	ST oil level			✓	✓ /#2			
Alarm: ST engine protection	ST Motorschutz	ST Eng. protect.			✓				
Alarm: ST overspeed	ST Überdrehzahl	ST overspeed							✓
Alarm: ECU red alarm ^{#7}	ECU Rot-Alarm	ECU red alarm		✓	✓	✓	√	✓	✓
Alarm: oil pressure too low	Öldruck niedrig	Low oil pressure				✓			✓
Alarm: ST oil pressure	ST Öldruck	ST oil pressure			✓				~
Alarm: ECU yellow alarm ^{#7}	ECU Gelb-Alarm	ECU yell. alarm		✓	✓	✓	√	✓	✓
Alarm: coolant level	Kühlmittelstand	Coolant level			✓ /#3				√ /#3
Alarm: coolant temperature	Kühlmittelvorh.	Preheat Temp low							✓
Alarm: ST coolant charging air	STKühlm.Ladeluft	ST Cool.chrg.air			✓				~
Alarm: SD set speed	SD Solldrehzahl	SD Speed demand							✓
Alarm: SD engine speed	SD Agg.Drehzahl	SD Engine speed	190	✓	✓	✓	✓	✓	✓
Alarm: SD oil pressure	SD Öldruck	SD Oil pressure	100	✓	✓	✓	✓	✓	✓
Alarm: SD error codes	SD Fehler Codes	SD failure codes							✓
Alarm: SD operating hours	SD Betr.Std.	SD oper. hours	247	✓	✓	✓	✓	✓	✓
Alarm: SD coolant temperature	SD Kühlmitteltmp	SD Coolant temp.	110	✓	✓	✓	✓	✓	✓
Alarm: SD oil temperature	SD Öltemperatur	SD Oil temp.	175	✓	✓	✓	✓	✓	✓
Alarm: SD fuel temperature	SD Kraftst.Tmp.	SD Fuel temp.	174	✓	✓	✓		✓	✓
Alarm: SD fuel consumption	SD Kraftst.verbr.	SD Fuel rate	183	✓	✓	✓	✓		
Remote control							✓		
Speed set point via CAN #8				✓	✓	✓	✓	✓	✓
Start engine via CAN						✓	√	✓	
Stop engine via CAN				√	✓	√	√	✓	
Switch droop via CAN #9				✓		√	✓	✓	
Switch rated speed via CAN						1	1	~	
(1500 /1800 rpm)						v		v	
Ramp rated speed via CAN						√	✓		
Monitoring (If these watchdogs									
are enabled, the values									
measured by the ECU are									
monitored instead of the									
repsetive analog inputs.)									
Oil pressure				✓	✓	✓	✓	✓	~
Coolant temperature				√	✓	✓	✓	✓	✓
Speed	1			✓	✓	✓	✓	✓	✓

 * for example Iveco, Perkins, John Deere, CAT and other ECU manufacturers
 SD..Sensor defective, ST..Stop/shutdown, AL..Alarm; #1 the resolution is 1 °C; #2 can either mean "oil pressure too high" as well as "oil pressure too low";
 #3 For the EMR2, this display means shutdown because of too low coolant level; for MDEC only Warning because of too low coolant level; #4 Switchable: bar ↔ psi, or °C ↔ °F; #5 displayed are SPN and FMI of the active errors DM1; #6 (=Suspect Parameter Name) indicates the measurement values, to which the error code refers, according to J1939 protocol; #7 Please note that this type of fault display is standard, but is not supported by all ECUs; #8 A speed set point via CAN is only possible if the GCP is equipped with a BPQ or XPQ package (analog controller); #9 Droop should be enabled for parallel applications

NOTE

This overview has only an informative character and is not binding because of the many ECU models and their configuration possibilities.

Please note that the <u>functions may require to be enabled</u> for some ECUs when coupling ECUs. It may happen that this is only possible by the manufacturer and should be observed when ordering the ECU!

NOTE

The previous table (J1939 'Standard' = 'Std.') lists the displays, which can be displayed by the GCP in principal. If a value is not sent by the used ECU, this sends a corresponding indicator value according to the SAE J1939 standard. This is detected by the GCP and the respective value will not be displayed. A priority is defined in the CAN ID of an SAE J1939 message according to SAE J1939 standard. This is not taken into account by the GCP. Basically. the GCP receives messages of all priorities.

General Parameters and Functions for J1939 Engine Control Units and MDEC

The parameter "ECU interface monitoring" and "Monitoring ECU values" have the same meaning with all ECUs. Therefore, the are described in this section independent of the ECU.

NOTE

This parameter can only be configured using LeoPC1. Units with an older software revision act as if this parameter is set to YES.

ECU inte	ECU interface monitoring YES/NO		
YES	If the connection MDEC-GCP or J1939-GCP or the power supply is interrupted for approx. 5 s, the message "interf.err. Y1Y5" is displayed with alarm class 1. Additionally, the display values will be overwritten with question marks. Some ECUs show the behavior that the CAN bus is only active if the ignition is energized, i.e: disabling the ignition results a faulty display .		
No	If the connection MDEC-GCP or J1939-GCP is interrupted, this message is not displayed.		

Note: This setting has no effect on the interface error triggering for IKD and ST3. It has also no influence on the relays with the parameters 134 to 138.

Monitoring ECU Values

Monitoring ECU	Monitoring E	CU values (oil pressure, coolant temp., speed)	ON/OFF
Values ON	ON	The values for oil pressure, coolant temperature, and speed the ECU via CAN, may be monitored for exceeding config limits by the GCP. The watchdogs and the display screens analog inputs T6, T7 and the pickup input evaluate the EC with this setting. Therefore, the input signals of the anal T6, T7 and the pickup input are not displayed and not monitored .	gurable of the U values
		The ECU oil pressure value is displayed for "analog input" coolant temperature for "analog input" 7, and speed instead standard speed display. For this, these "inputs" must be en under analog inputs or engine. The monitoring will be performed with the monitoring par configured for these "inputs".	d of the abled
		The analog inputs 6 and 7 should be configured with the rename and the respective unit (pressure: 00,0bar or 000,0ps 000°C or 000°F).	-
	OFF	No monitoring of the ECU values will be performed. The a inputs T6, T7 and the pickup input of the GCP may be use	0

NOTE

The monitoring will be suppressed in case of a CAN bus fault. Since a reliable monitoring cannot be guaranteed anymore, it must be ensured that the engine shuts down automatically when reaching critical values!

NOTE

Some ECUs show the behavior that the CAN bus is only active if the ignition is energized, i.e: <u>disabling</u> <u>the ignition results a faulty display</u> (some screens are overwritten with question marks) for these ECUs and it also results an interface error if interface monitoring is enabled.

ECUs with CAN Bus Connection According to 'SAE J1939' Protocol

A lot of ECUs support the 'SAE J1939' protocol for exchanging CAN data. Each data information standardized there has an **SPN** (Suspect Parameter Number), which describes the data information. SPN 110 for example stands for the coolant temperature.

This standard defines several hundred SPNs. However, only a small part is important for most of the applications. Therefore, only a part of the SPNs is supported by the ECU.

Manufacturer-specific data (proprietary messages):

'SAE J1939' also allows for areas of manufacturer-specific data, i.e. for data, which is not defined in the standard. In most cases, these data are used for control purposes (like start/stop, speed set point). Some manufacturers also issue specific error messages using manufacturer-specific data.

Besides important standardized data, the GCP also support some manufacturer-specific datafor the "Deutz EMR2", "Scania S6", "Volvo EMS2", and "mtu ADEC" ECUs (refer to the overview table).

Selecting the Used J1939 ECU

J1939	J1939	OFF / Standard / EMR2 / S6 / EMS2 / ADEC
	OFF	The J1939 coupling is disabled: No J1939 data is processed. A faulty
Note J1939 coupling cannot be operated simultaneously with	Standard	
MDEC!		the SAE J1939 standard are displayed. This setting must be configured for all J1939 ECUs, which cannot be
	EMR2	selected here (e.g. John Deere, Perkins, Iveco, Sisu, etc.). The Deutz EMR2 is enabled: J1939 data according to the
	S6	SAE J1939 standard and some EMR2-specific data are considered. The Scania EMS/S6 is enabled: J1939 data according to the
	EMS2	SAE J1939 standard and some EMR2-specific data are considered. The Volvo EMS2 is enabled: J1939 data according to the SAE J1939
	ADEC	standard and some EMR2-specific data are considered. The MTU ADEC is enabled: J1939 data according to the SAE J1939 standard and some EMR2-specific data are considered.

NOTE

If a coupling is enabled, the following is valid:

A faulty J1939 connection can trigger an interface error Y1Y5. (If an interface error is triggered by the J1939 component, the display values are overwritten with question marks).

J1939 Standard ECU

The Standard setting is to be used for all J1939 engine control units, which cannot be selected explicitly in the J1939 parameter (e.g. John Deere, Perkins, Iveco, Sisu, etc.).

The baud rate for the engine bus must be configured the same as on the ECU (mostly 250 kBaud).

Displaying J1939 Data (Visualization)

If data is to be visualized only, no further settings are required (an exception is taking over the operating hours, refer to below).

The GCP is only able to display values, which are listed under Standard in the table, provided that they are also supported by the ECU. Please refer to the documents of the respective ECU for this! The respective functions may be enabled before for some ECUs.

Displaying the Active Alarm Codes with SPN and FMI:

The GCP can display the active alarm codes (DM1), which are sent with the "Conversion Method" version 1 or version 4 (refer to the information from the ECU manufacturer). The GCP displays the active alarm codes in a screen as follows, if supported by the ECU:

"A SPN00000 FMI00"

This screen displays the active (A) alarm codes according to SAE J1939 (DM1):

SPN (= Suspect Parameter Number) indicates e.g. the measurement value, to which the alarm code refers, (e.g. SPN = 100 corresponds to oil pressure).

FMI (= Failure Mode Indicator) specifies the alarm more detailed (e.g. FMI = 3 means: value is valid but over the standard value.)

If more alarms are present, up to 10 alarms can be taken up. The displayed alarm code changes approx. every 3 s then.

"SPN = FMI = 0" means: No alarm is present or alarm codes are not available (see documentation of the used ECU).

The centralized faults yellow or red alert are displayed. These can be assigned to an output relay. The DM1 alarm messages are not deleted when the CAN bus is interrupted. This enables to view the last ECU alarm messages even if the ECU is disabled.

Display of the J1939 Operating Hours

If J1939 is enabled and the operating hours are sent by the J1939 ECU, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency.

The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency.

The **ECU unit number must be configured** to enable the ECU to take over the operating hours.

Note to J1939 interface error - If the GCP does not receive J1939 data for approx. 5 s, the measurement values of the J1939 participants are overwritten with question marks and the J1939 alarm messages are suppressed. Moreover, the relay with the parameter 138 de-energizes (or energizes; depending on programming). If the GCP receives J1939 data again, the relay energizes again, and the measurement values as well as the alarm messages of the J1939 participants are displayed again.

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1 additionally.

This message is only cleared with an acknowledgement.

Remote Control According to J1939 Standard

If the remote control function is to be used, the parameters "ECU unit numb." (refer to operating hours above), "Remote con. J1939", "J1939 Droop", "GCP device numb.", and "max speed offset" are to be configured.

ote con.J1939	Remote control	YES/NO
YES	NORemote control is disabled. The GCI the ECU.	P sends no control commands to
	YES The GCP supports the following rem point pre-set and droop	note control functions: speed set
Droop	J1939 Droop	OFF / Parallel / Permanent
OFF	OFF GCP sends always "Alternative droop Parallel Unit sends "Alternative droop 1" onl Permanent Unit never sends "Alternative droop	y if a circuit breaker is closed.
	Note: For some ECUs, switching the droop during setting) may cause brief power rises, because the f speed set point pre-set at first for some ECUs.	
	Details: The droop is controlled with SPN 2881 (Engine A Select). This means that 2 droop values are to be co 1. The "normal" droop value, which is to be used with droop and	onfigured at the ECU:
	 the "alternative" droop 1 value, which is to be u operate without droop. Refer to the ECU manual to find out whether the u SPN 2881. 	
b.	J1939 unit number	0 to 255
000	The GCP sends only data to the ECU, which sends (This setting is necessary because the operating ho GCP in contrast to other data.)	

Standard value = 0

GCP device numb.	GCP device number	0 to 255
000	Some ECUs accept only remote control commands sent by devices device number. This number must be configured here. This parameter is only visible if remote control is enabled.	with a specific
max speed offset	Speed offset	0 to 999 min ⁻¹
000 1/min	This parameter is only visible if the remote control is enabled and a of the speed deviation around the rated speed, which is sent to the I It relates to the engine rated speed. There are two methods of sendi point to the ECU: With a speed offset and a speed set point.	EČU.
	Note: In order to utilize the speed output for the ECU via CAN, the controller for frequencies has to be enabled with maximum output Otherwise the maximum speed offset may not be reached.	0
	The GCP sends a speed set point in rpm that varies around the rated range of +/- the speed deviation.	d speed in the
	How to test this parameter during commissioning:	
	Isolated operation: Disable the frequency controller and change the the initial state between 0 and 100%, the engine should change the	-

0 = rated speed - speed deviation ECU e.g. <math>1500 - 120 = 1380 rpm 50 = rated speed e.g. = 1500 rpm100 = rated speed + speed deviation ECU e.g. <math>1500 + 120 = 1620 rpm

Note: Keep this value as small as possible, i.e. do not enter a speed deviation of 500, if the engine varies only between 1400 and 1600rpm.

Mains parallel operation: Check with the set point in the display if the engine is able to deliver the full power.

Speed Pre-Set:

follows:

The speed pre-set is performed on TSC1, SPN 898. An absolute speed value will be sent to the ECU for this. Refer to the ECU manual to find ouit whether the used ECU supports the SPN 898.

DEUTZ EMR2 J1939

The EMR2 setting is to be configured for the Deutz EMR 2 ECU.

The baud rate for the engine bus must be configured to 250 kBaud.

Displaying J1939 Data (Visualization)

If data is to be visualized only, no further settings are required (an exception is taking over the operating hours, refer to below).

The GCP is able to display values, which are listed under EMR2 in the table.

Displaying the Active Alarm Codes with SPN and FMI:

The GCP can display the active alarm codes (DM1). The GCP displays the active alarm codes in a screen as follows, if supported by the ECU:

"A SPN00000 FMI00"

This screen displays the active (A) alarm codes according to SAE J1939 (DM1):

SPN (= Suspect Parameter Number) indicates e.g. the measurement value, to which the alarm code refers, (e.g. SPN = 100 corresponds to oil pressure).

FMI (= Failure Mode Indicator) specifies the alarm more detailed (e.g. FMI = 3 means: value is valid but over the standard value.)

If more alarms are present, up to 10 alarms can be taken up. The displayed alarm code changes approx. every 3 s then.

"SPN = FMI = 0" means: No alarm is present or alarm codes are not available.

The centralized faults yellow or red alert are displayed. These can be assigned to an output relay. The DM1 alarm messages are not deleted when the CAN bus is interrupted. This enables to view the last ECU alarm messages even if the ECU is disabled.

Display of the J1939 Operating Hours

If J1939 is enabled and the operating hours are sent by the J1939 ECU, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency.

The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency.

The ECU unit number must be configured to enable the ECU to take over the operating hours:

Note to J1939 interface error - If the GCP does not receive J1939 data for approx. 5 s, the measurement values of the J1939 participants are overwritten with question marks and the J1939 alarm messages are suppressed. Moreover, the relay with the parameter 138 de-energizes (or energizes; depending on programming). If the GCP receives J1939 data again, the relay energizes again, and the measurement values as well as the alarm messages

of the J1939 bata again, the relay energizes again, and the measurement values as well as the alarm messages of the J1939 participants are displayed again. If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1 additionally.

This message is only cleared with an acknowledgement.

Remote Control for Deutz EMR 2

If the remote control function is to be used, the parameters "ECU unit numb." (refer to operating hours above), "Remote con. J1939", "GCP device numb.", and "max speed offset" are to be configured.

Remote con.J1939	Remote control	YES/NO
YES	NORemote control is disabled. The GCP sends the ECU.	s no control commands to
	YES The GCP supports the following remote co point pre-set and droop	ntrol functions: speed set
ECU unit numb.	J1939 unit number	0 to 255
000	The GCP sends only data to the ECU, which sends using (This setting is necessary because the operating hours mu GCP in contrast to other data.) Standard value = 0	
GCP device numb.	GCP device number	0 to 255
000	Some ECUs accept only remote control commands sent b device number. This number must be configured here. For configured usually. This parameter is only visible if remote control is enabled Standard value = 3	or EMR2, 3 must be

Standard value = 3

max speed offset	Speed offset	0 to 999 min ⁻¹
000 1/min	This parameter is only visible if the remote control is enabled and of the speed deviation around the rated speed, which is sent to th It relates to the engine rated speed. There are two methods of sen point to the ECU: With a speed offset and a speed set point.	e ECU.
	Note: In order to utilize the speed output for the ECU via CAN, controller for frequencies has to be enabled with maximum out Otherwise the maximum speed offset may not be reached.	
	The GCP sends a speed set point in rpm that varies around the ra range of +/- the speed deviation.	ted speed in the
	How to test this parameter during commissioning:	
	Isolated operation: Disable the frequency controller and change t the initial state between 0 and 100%, the engine should change th follows:	
	$\begin{array}{ll} 0 &= \text{rated speed} - \text{speed deviation ECU} & \text{e.g. } 1500 - 120 &= 1\\ 50 &= \text{rated speed} & \text{e.g.} &= 1\\ 100 &= \text{rated speed} + \text{speed deviation ECU} & \text{e.g. } 1500 + 120 &= 1 \end{array}$	500rpm
	Note: Keep this value as small as possible, i.e. do not enter a spee 500, if the engine varies only between 1400 and 1600rpm.	ed deviation of

Mains parallel operation: Check with the set point in the display if the engine is able to deliver the full power.

Speed Pre-Set:

The speed pre-set is performed on TSC1, SPN 898. An absolute speed value will be sent to the ECU for this.

SCANIA S6 J1939

The S6 setting is to be configured for the Scania S6 ECU.

The baud rate for the engine bus must be configured to 250 kBaud for J1939 applications.

Displaying J1939 Data (Visualization)

If data is to be visualized only, no further settings are required (an exception is taking over the operating hours, refer to below).

The GCP is able to display values, which are listed under Scania S6 in the table.

Displaying the Active Alarm Codes with SPN and FMI:

The active alarm codes DM1 with SPN and FMI cannot be displayed, because these alarm codes are not supported by the Scania S6.

However, the collective yellow or red alarms are displayed. These may be assigned to a relay.

Moreover, some manufacturer-specific alarm codes are supported (refer to overview table).

Display of the J1939 Operating Hours

If J1939 is enabled and the operating hours are sent by the J1939 ECU, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency.

The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency.

The ECU unit number must be configured to enable the ECU to take over the operating hours:

Note to J1939 interface error - If the GCP does not receive J1939 data for approx. 5 s, the measurement values of the J1939 participants are overwritten with question marks and the J1939 alarm messages are suppressed. Moreover, the relay with the parameter 138 de-energizes (or energizes; depending on programming). If the GCP receives J1939 data again, the relay energizes again, and the measurement values as well as the alarm messages of the J1939 participants are displayed again.

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1 additionally.

This message is only cleared with an acknowledgement.

Remote Control for Scania S6

If the remote control function is to be used, the parameters "ECU unit numb." (refer to operating hours above), "Remote con. J1939", "J1939 Droop", "GCP device numb.", and "max speed offset" are to be configured. If the remote control function is enabled, the "Scania Coordinator" **must not** be used at the same time, because this may result in conflicts on the CAN bus.

CAUTION

It is essential to observe that the engine can also be stopped safely without a CAN connection in an emergency case (for example by disabling the ignition at the ECU)!

n.J1939 Remote o	control	YES/NO
YES NO	Remote control is disabled. The GC the ECU.	CP sends no control commands to
YES		mote control functions: speed set
J1939 Di	roop	OFF / Parallel / Permanent
F OFF	GCP sends no droop bit	
Parallel	Unit sends droop bit to the ECU as closed.	soon as both circuit breakers are
Perman	ent Unit sends always a droop bit to the	e ECU.
setting)	or some ECUs, switching the droop durin may cause brief power rises, because the et point pre-set at first for some ECUs.	
J1939 un	it number	0 to 255
The GC	P sends only data to the ECU, which send d value = 0	ls using this CAN device number.
GCP dev	vice number	0 to 255
Some EQ	CUs accept only remote control command	ds sent by devices with a specific
	umber. This number must be configured	
This par	ameter is only visible if remote control is	enabled.

Standard value = 3

max speed of	offset	S
000	1/min	т

0 to 999 min⁻¹

This parameter is only visible if the remote control is enabled and adjusts the range of the speed deviation around the rated speed, which is sent to the ECU. It relates to the engine rated speed. There are two methods of sending the speed set point to the ECU: With a speed offset and a speed set point.

Note: In order to utilize the speed output for the ECU via CAN, the **analog controller for frequencies** has to be enabled with maximum output range. Otherwise the maximum speed offset may not be reached.

The GCP sends a speed offset with a range of 0 to 100%. 50% = rated speed. There is also an internal speed offset configured in the ECU, this parameter determines what corresponds with 0% or 100%. If there is a positive and a negative speed offset, they should be symmetrical in the ECU. We recommend to have the same speed offset configured in the ECU and in this parameter here. A different setting will result in an additional "controller gain".

How to test this parameter during commissioning:

Isolated operation: Disable the frequency controller and change the parameter for the initial state between 0 and 100%, the engine should change the speed as follows:

- 0 = rated speed negative speed offset from ECU
- 50 = rated speed
- 100 = rated speed + positive speed offset from ECU

Mains parallel operation: Check with the set point in the display if the engine is able to deliver the full power.

Start Command:

The start command will always be issued if the starter relay is enabled. The command will be reset as soon as speed is detected. (ID: Proprietary)

Stop Command:

The start command will always be issued if the engine is not released and speed is detected. (ID: Proprietary)

Speed Offset

The GCP issues a speed offset relative to the rated speed accoring to the controller output and the configured speed offset. (ID: Proprietary)

Droop

The GCP will issue a droop bit according to the setting of the parameter "J1939 Droop". (ID: Proprietary)

Idle Operation:

If idle mode is enabled via terminal 70, the GCP issues a respective command to the ECU. (ID:Proprietary)

Critical Operation (Override):

If critical mode is selected via terminal 6, the GCP issues an "Override" command to the Scania ECU. (ID:Proprietary)

Rated Speed:

The GCP selects the rated speed 1 or 2 to be sent to the Scania ECU using the rated speed configured under Engine / Pickup. If the configured rated speed is 1800 rpm, rated speed 2 (standard 1800 rpm) will be sent, for every other value, rated speed 1 (standard 1500 rpm) will be sent. (ID:Proprietary)

Volvo EMS 2 J1939

The EMS2 setting is to be configured for the Volvo EMS 2 ECU.

The baud rate for the engine bus must be configured to 250 kBaud.

Displaying J1939 Data (Visualization)

If data is to be visualized only, no further settings are required (an exception is taking over the operating hours, refer to below).

The GCP is able to display values, which are listed under Volvo EMS2 in the table.

Displaying the Active Alarm Codes with SPN and FMI:

The GCP can display the active alarm codes (DM1). The GCP displays the active alarm codes in a screen as follows, if supported by the ECU:

"A SPN00000 FMI00"

This screen displays the active (A) alarm codes according to SAE J1939 (DM1):

SPN (= Suspect Parameter Number) indicates e.g. the measurement value, to which the alarm code refers, (e.g. SPN = 100 corresponds to oil pressure).

FMI (= Failure Mode Indicator) specifies the alarm more detailed (e.g. FMI = 3 means: value is valid but over the standard value.)

If more alarms are present, up to 10 alarms can be taken up. The displayed alarm code changes approx. every 3 s then.

"SPN = FMI = 0" means: No alarm is present or alarm codes are not available.

The centralized faults yellow or red alert are displayed. These can be assigned to an output relay. The DM1 alarm messages are not deleted when the CAN bus is interrupted. This enables to view the last ECU alarm messages even if the ECU is disabled.

Display of the J1939 Operating Hours

If J1939 is enabled and the operating hours are sent by the J1939 ECU, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency.

The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency.

The ECU unit number must be configured to enable the ECU to take over the operating hours:

Manual 37382

Note to J1939 interface error - If the GCP does not receive J1939 data for approx. 5 s, the measurement values of the J1939 participants are overwritten with question marks and the J1939 alarm messages are suppressed. Moreover, the relay with the parameter 138 de-energizes (or energizes; depending on programming). If the GCP receives J1939 data again, the relay energizes again, and the measurement values as well as the alarm messages of the J1939 participants are displayed again.

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1 additionally.

This message is only cleared with an acknowledgement.

Remote Control for Volvo EMS 2

If the remote control function is to be used, the parameters "ECU unit numb." (refer to operating hours above), "Remote con. J1939", "J1939 Droop", "GCP device numb.", and "max speed offset" are to be configured.

If the remote control function is enabled, the "Volvo Translator" (CIU) **must not** be used at the same time, because this may result in conflicts on the CAN bus.

CAUTION

It is essential to observe that the engine can also be stopped safely without a CAN connection in an emergency case (for example by disabling the ignition at the ECU)!

Remote con.J1939	Remote control	YES/NO
YES	NORemote control is disabled. The GCP sends no cont the ECU.	trol commands to
	YESThe GCP supports the following remote control fun point pre-set and droop	ections: speed set
1939 Droop	J1939 Droop OFF / Par	rallel / Permanen
OFF	OFF GCP sends no droop bit	
	ParallelUnit sends droop bit to the ECU as soon as both circlosed.	cuit breakers are
	Permanent Unit sends always a droop bit to the ECU.	
	Note: For some ECUs, switching the droop during operation (e.g. setting) may cause brief power rises, because the full droop value I speed set point pre-set at first for some ECUs.	1
W. unit numb		1
CU unit numb. 000	setting) may cause brief power rises, because the full droop value I speed set point pre-set at first for some ECUs.	has effect on the 0 to 25: N device number
000	 setting) may cause brief power rises, because the full droop value I speed set point pre-set at first for some ECUs. J1939 unit number The GCP sends only data to the ECU, which sends using this CAI (This setting is necessary because the operating hours must be req GCP in contrast to other data.) 	has effect on the 0 to 25: N device number juested from the
	<pre>setting) may cause brief power rises, because the full droop value I speed set point pre-set at first for some ECUs. J1939 unit number The GCP sends only data to the ECU, which sends using this CAI (This setting is necessary because the operating hours must be req GCP in contrast to other data.) Standard value = 0</pre>	has effect on the 0 to 255 N device number juested from the 0 to 255

max speed offset	
000 1/min	

Speed	offset
-------	--------

0 to 999 min⁻¹

This parameter is only visible if the remote control is enabled and adjusts the range of the speed deviation around the rated speed, which is sent to the ECU. It relates to the engine rated speed. There are two methods of sending the speed set point to the ECU: With a speed offset and a speed set point.

Note: In order to utilize the speed output for the ECU via CAN, the **analog controller for frequencies** has to be enabled with maximum output range. Otherwise the maximum speed offset may not be reached.

The GCP sends a speed offset with a range of 0 to 100%. 50% = rated speed. There is also an internal speed offset configured in the ECU, this parameter determines what corresponds with 0% or 100%. If there is a positive and a negative speed offset, they should be symmetrical in the ECU. We recommend to have the same speed offset configured in the ECU and in this parameter here. A different setting will result in an additional "controller gain".

How to test this parameter during commissioning:

Isolated operation: Disable the frequency controller and change the parameter for the initial state between 0 and 100%, the engine should change the speed as follows:

- 0 = rated speed negative speed offset from ECU
- 50 = rated speed
- 100 = rated speed + positive speed offset from ECU

Mains parallel operation: Check with the set point in the display if the engine is able to deliver the full power.

Start Command:

The start command will always be issued if the starter relay is enabled. The command will be reset as soon as speed is detected. (ID: Proprietary)

Stop Command:

The start command will always be issued if the engine is not released and speed is detected. (ID: Proprietary)

Speed Offset

The GCP issues a speed offset relative to the rated speed according to the controller output and the configured speed offset. (ID: Proprietary)

Droop

The GCP will issue a droop bit according to the setting of the parameter "J1939 Droop". (ID: Proprietary)

Idle Operation:

If idle mode is enabled via terminal 70, the GCP issues a respective command to the ECU. (ID:Proprietary)

Rated Speed:

The GCP selects the rated speed 1 or 2 to be sent to the ECU using the rated speed configured under Engine / Pickup. If the configured rated speed is 1800 rpm, rated speed 2 (standard 1800 rpm) will be sent, for every other value, rated speed 1 (standard 1500 rpm) will be sent. (ID:Proprietary)

Note:

The change is only effective if the ECU is able to detect a **change** of the rated speed. Therefore, the ECU must be enabled and connected to the GCP via CAN during the change of the rated speed. If an ECU, which is configured to a rated speed of 1500 rpm, is connected to a GCP, which has been configured to 1800 rpm without an ECU connection, the setting 1500 rpm is maintained in the ECU!

Preglow:

The GCP sends a respective command to the ECU during the preglow period (however, this command will not be executed by all ECUs). (ID:Proprietary)

mtu ADEC J1939

The ADEC setting is to be configured for the mtu ADEC ECU.

The baud rate for the engine bus must be configured to 250 kBaud.

CAUTION

The GCP must not be connected directly to the ADEC bus. A SAM (Service and Application Module) with J1939 card must be connected in between!

Displaying J1939 Data (Visualization)

If data is to be visualized only, no further settings are required (an exception is taking over the operating hours, refer to below).

The GCP is able to display values, which are listed under ADEC in the table.

Displaying the Alarm Codes:

The alarm codes are displayed in the "FailCodes 0000" screen. If more than one alarm is present, the alarm numbers are displayed one after the other.

Additionally, the collective yellow or red alarms are displayed. These may be assigned to a relay.

Display of the J1939 Operating Hours

If J1939 is enabled and the operating hours are sent by the J1939 ECU, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency.

The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency.

The **ECU unit number must be configured** to enable the ECU to take over the operating hours:

Note to J1939 interface error - If the GCP does not receive J1939 data for approx. 5 s, the measurement values of the J1939 participants are overwritten with question marks and the J1939 alarm messages are suppressed. Moreover, the relay with the parameter 138 de-energizes (or energizes; depending on programming). If the GCP receives J1939 data again, the relay energizes again, and the measurement values as well as the alarm messages of the J1939 participants are displayed again.

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1 additionally.

This message is only cleared with an acknowledgement.

Remote Control for mtu ADEC

If the remote control function is to be used, the parameters "ECU unit numb." (refer to operating hours above), "Remote con. J1939", "J1939 Droop", "GCP device numb.", and "max speed offset" are to be configured.

CAUTION

It is essential to observe that the engine can also be stopped safely without a CAN connection in an emergency case (for example by disabling the ignition at the ECU)!

Remote co	ontrol	YES/NO
	Remote control is disabled. The GCP sends n the ECU. The GCP supports the following remote contr point pre-set and droop	
roop J1939 Dro	oop OF	F / Parallel / Permanent
OFF OFF Parallel.	GCP sends no droop bit Unit sends droop bit to the ECU as soon as bo closed. entUnit sends always a droop bit to the ECU.	oth circuit breakers are
setting) r	or some ECUs, switching the droop during operation may cause brief power rises, because the full droop t point pre-set at first for some ECUs.	
If no dro configure	a droop of 4 % is configured by default with the A op is to be used, a change to Droop 2 will be perfo ed to 0 % by default (Droop2 corresponds with the ccelerator 1 Select", SPN 2881, according to J1939	rmed. This is "Engine Alternative
J1939 uni	it number	0 to 255
The value	P sends only data to the ECU, which sends using the 128 must be configured for mtu ADEC here. $d_value = 0$	is CAN device number.
mb. GCP devi	ice number	0 to 255
The device to the AI only. The This para	ce number, from which the ADEC accepts remote DEC settings) must be entered here. Then, the GCP e value 1 must be configured here for the ADEC co ameter is only visible if remote control is enabled. t value = 3	sends with this number

max speed offset	Speed offset	0 to 999 min ⁻¹
000 1/min	This parameter is only visible if the remote control is enabled and of the speed deviation around the rated speed, which is sent to the It relates to the engine rated speed. There are two methods of sent point to the ECU: With a speed offset and a speed set point.	e ECU.
	Note: In order to utilize the speed output for the ECU via CAN, the analog controller for frequencies has to be enabled with maximum output range. Otherwise the maximum speed offset may not be reached.	
	The GCP sends a speed set point in rpm that varies around the rat range of +/- the speed deviation.	ed speed in the
	How to test this parameter during commissioning:	
	Isolated operation: Disable the frequency controller and change the initial state between 0 and 100%, the engine should change the follows:	
		380rpm 500rpm 620rpm
	Note: Keep this value as small as possible, i.e. do not enter a spectrum 500, if the engine varies only between 1400 and 1600rpm.	ed deviation of
	Mains parallel operation: Check with the set point in the display is able to deliver the full power.	if the engine is

Start Command:

The start command will always be issued if the starter relay is enabled. The command will be reset as soon as speed is detected. (ID: Proprietary)

Stop Command:

The start command will always be issued if the engine is not released and speed is detected. (ID: Proprietary)

Speed Pre-Set:

The speed pre-set is performed on TSC1, SPN 898. An absolute speed value will be sent to the ECU for this.

Droop

The droop will be controlled using the SPN 2881 (Engine Alternative Droop Accelerator 1 Select). This means that 2 droop values are to be configured at the ECU.

1. The "normal" droop value (for ADEC 4% by default), which is to be used, if the GCP does not enable the droop bit.

2. The 1. alternativ droop value (Droop 2 for ADEC 0% by default), which is to be used, if the GCP enables the droop bit.

Rated Speed:

The GCP selects the rated speed 1 (50 Hz, 1500 rpm) or 2 (60 Hz, 1800 rpm) to be sent to the ECU using the rated speed configured under Engine / Pickup. (If the configured rated speed is neither 1500 rpm nor 1800 rpm, a failure ID will be sent to the ECU.) (ID:Proprietary)

J1939 Relay Manager Functions

No.	Outputs	Note
138	Communication with J1939 okay	
150	Yellow alarm	
151	Red alarm	

If the red or yellow alarm is intended to trigger an alarm class, the respective relay output may be connected with a discrete input.

Send Telegram Guidance Bus for J1939 ECU Data

\mathbf{i}

The following data is transferred in the 'extended blocks' of the GCP. The data volume, which is added by the 'extended blocks', results that a gateway GW 4 can only transfer the data of the first four GCPs anymore. If it is necessary that all data of all GCPs is to be transferred, a second Gateway GW 4 has to be used.

NOTE

NOTE

The analog values are overwritten with "0" in case of an interface error.

r		~		~	
MUX	No.	Content (words)	Unit	Comment	
W	Z				
L					
02/1	70	C (0772			
23/1	70	refer to ST3			
23/2	71	refer to ST3			
23/3	72	refer to ST3			
24/1	73	Engine speed	rpm	0.41111	•
24/2	74 75	Oil pressure	bar \times 0,01	Switchable: b together with	$par \leftrightarrow psi$
24/3 25/1	75	Alarm code SPN (active alarms DM1) Operating hours	- h	together with	N0. 80
25/1	70	Coolant temperature	$^{\rm n}$ °C × 0,1 (+/-)	Switchable: °	C () ⁹ E
25/2	78	Oil temperature	$C \times 0,1 (+/-)$ °C × 0,1 (+/-)	Switchable: °	
26/1	79	Fuel temperature	$^{\circ}C \times 0,1 (+/-)$	Switchable: °	
26/2	80	Alarm code FMI (active alarms DM1)	-	together with	
26/2	81	ECU alarms 1		Bit $15 = 1$	ST coolant charging air ^{/#1}
20/5	01			Bit $13 = 1$ Bit $14 = 1$	Internal
				Bit 13 = 1	Coolant level ^{/#1}
				Bit $12 = 1$	Yellow alarm
				Bit $12 = 1$ Bit $11 = 1$	ST oil pressure ^{/#1}
				Bit $11 = 1$ Bit $10 = 1$	Oil pressure low ^{/#2}
				Bit 10 = 1 Bit 9 = 1	Red alarm
				Bit 9 = 1 Bit 8 = 1	Internal
				$\frac{Bit 8}{Bit 7} = 1$	ST engine protection ^{#1}
				Bit 7 = 1 Bit 6 = 1	ST eighte protection ST oil level /#1/#2
				Bit 6 = 1 Bit 5 = 1	Internal
				Bit 3 = 1 Bit 4 = 1	SD coolant level
				Bit 4 = 1 Bit 3 = 1	Internal
					ST coolant temperature ^{/#1}
				$\begin{array}{rrr} \text{Bit 2} &= 1 \\ \text{Bit 1} &= 1 \end{array}$	Coolant temperature /#2
					Internal
27/1	82	ECU alarms 2		Bit 0 = 1 $Bit 15 = 1$	SD fuel temperature
2//1	02			Bit $13 = 1$ Bit $14 = 1$	SD oil temperature
				Bit $14 = 1$ Bit $13 = 1$	SD coolant temperature
				Bit 12 = 1	Internal
				Bit $11 = 1$	Internal
				Bit $10 = 1$	SD oil pressure
				Bit 9 = 1	SD engine speed
				Bit 8 = 1	Internal
				Bit 7 = 1	Internal
				Bit $6 = 1$	Internal
				Bit 5 = 1	Internal
				Bit $4 = 1$	Internal
				Bit 3 = 1	Internal
				Bit 2 = 1	Internal
				Bit 1 = 1	Internal
				Bit 0 = 1	Internal
27/2	83	Fuel consumption		0000,0 l/h	
27/3	84	Reserve			
28/1	85	Coolant level	%		ECU value present
				FExx'h = pro	be error
28/2	86	Reserve		Dit 15 - 1	Internal
28/3	87	Reserve		Bit 15 = 1	Internal
				 Bit 9 = 1	 Internal
					Internal Interface error Y1Y5 by J1939
				Bit 8 = 1 $Bit 7 = 1$	
				Bit $7 = 1$	Internal
				${D_{i+0}} = 1$	 Internal
				Bit $0 = 1$	Internal

#1 only Deutz EMR 2, **#2** only Scania EMS/S6, **#3** the DM1 errors are displayed for Standard, EMR2, and EMS2. If more alarms are present, up to 10 alarms can be taken up at the same time. The forwarded alarm code changes approx. every 3 s then. With ADEC, the alarm code is sent upon word 75. Wors 80 has no importance with ADEC.

Engine Control 'MDEC'

i NOTE

Please take information about the MDEC functions from the manufacturer's manual.

The MDEC engine control has proprietary CAN protocols (V302, V303, V304), which are not based on J1939.

The engine bus **baud rate** is to be configured to 125 kBaud for MDEC applications.

	MDEC	OFF / ON
Note cannot be operated neously with J1939	1 0	is disabled and no MDEC data is C connection cannot trigger an interface
coupling!		is enabled, MDEC values and the displayed, and values are sent to the
	controllers.	trol is performed via analog or three-step parameter, a faulty MDEC connection may
(If		MDEC, the display values are overwritten
	1 /	

Configure the protocol implemented in the MDEC here.

max speed offset	Speed offset	0 to 999 min ⁻¹
000 1/min	This parameter is only visible if the remote control is enabled and of the speed deviation around the rated speed, which is sent to the It relates to the engine rated speed. There are two methods of sen point to the ECU: With a speed offset and a speed set point.	e ECU.
	Note: In order to utilize the speed output for the ECU via CAN, to controller for frequencies has to be enabled with maximum output Otherwise the maximum speed offset may not be reached.	
	The GCP sends a speed set point in rpm that varies around the rar range of +/- the speed deviation.	ted speed in the
	How to test this parameter during commissioning:	
	Isolated operation: Disable the frequency controller and change t the initial state between 0 and 100%, the engine should change the follows:	
	0 = rated speed - speed deviation ECU e.g. 1500 - 120 = 1 50 = rated speed e.g. = 1 100 = rated speed + speed deviation ECU e.g. 1500 + 120 = 1	500rpm
	Note: Keep this value as small as possible, i.e. do not enter a spe 500, if the engine varies only between 1400 and 1600rpm.	ed deviation of
	Mains parallel operation: Check with the set point in the display	if the engine is

Mains parallel operation: Check with the set point in the display if the engine is able to deliver the full power.

Note to MDEC interface error - If the GCP does not receive an "Alive" message from the MDEC for approx. 6 s, the MDEC measurement values are overwritten with question marks and the MDEC alarm messages are suppressed. Moreover, the relay with the parameter 137 de-energizes (or energizes; depending on programming). If the GCP receives the "Alive" message again, the relay energizes again, and the measurement values as well as the alarm messages of the MDEC are displayed again.

If the parameter ECU interface monitoring is set to YES, the interface error Y1Y5 message is displayed with alarm class 1.

This message is only cleared with an acknowledgement.

(If an interface error Y1Y5 is triggered, which has been caused by e.g. a faulty IKD communication, the MDEC values will still be displayed correctly.)

Display of the MDEC Operating Hours

If MDEC is enabled, the operating hours of the ECU (max. 65535 hours) are used for the operating hour display. The maintenance is also evaluated from this.

NOTE

The operating hour update takes place every minute with detected generator frequency. (The operating hour output on word 76 of the guidance bus takes place independently of the generator frequency).

The Output Relay Manager

No.	Outputs	Note
137	Communication with MDEC okay	
150	Yellow alarm	
151	Red alarm	

If the red or yellow alarm is intended to trigger an alarm class, the respective relay output may be connected with a discrete input.

Send Telegram Guidance Bus for MDEC Data

NOTE

The following data is transferred in the 'extended blocks' of the GCP. The data volume, which is added by the 'extended blocks', results that a gateway GW 4 can only transfer the data of the first four GCPs anymore. If it is necessary that all data of all GCPs is to be transferred, a second Gateway GW 4 has to be used.

			.	a i	
MUX	No.	Content (words)	Unit	Comment	
IM	Z				
23/1	70	refer to ST3			
23/1	71	refer to ST3			
23/2	72	refer to ST3			
24/1	73	Engine speed	rpm		
24/2	74	Oil pressure	bar × 0,01	Switchable: b	par ↔ psi
24/3	75	Alarm codes	, , , , , , , , , , , , , , , , , , , ,		
25/1	76	Operating hours of the ECU	h		
25/2	77	Coolant temperature	°C × 0,1 (+/-)	Switchable: °	
25/3	78	Oil temperature	°C × 0,1 (+/-)	Switchable: °	
26/1	79	Fuel temperature	°C × 0,1 (+/-)	Switchable: °	$^{\circ}C \leftrightarrow ^{\circ}F$
26/2	80	Speed reply	rpm	D'(15 1	07 1 (1)
26/3	81	ECU alarms 1		Bit $15 = 1$ Bit $14 = 1$	ST coolant charging air Coolant preheating
				Bit $14 = 1$ Bit $13 = 1$	Coolant level
				Bit $13 = 1$ Bit $12 = 1$	ECU yellow alarm
				Bit $12 = 1$ Bit $11 = 1$	ST oil pressure
				Bit $10 = 1$	Oil pressure low
				Bit 10 = 1 Bit 9 = 1	ECU red alarm
				Bit $8 = 1$	ST overspeed
				Bit $7 = 1$	Internal
				Bit 6 = 1	Internal
				Bit $5 = 1$	SD coolant charging air
				Bit 4 = 1	SD coolant level
				Bit $3 = 1$	Oil temperature exceeded
				Bit $2 = 1$	ST coolant temperature
				Bit $1 = 1$	Coolant temperature
				Bit $0 = 1$	AL ECU defective
27/1	82	ECU alarms 2		Bit 15 = 1	SD fuel temperature
				Bit 14 = 1	SD oil temperature
				Bit 13 = 1	SD coolant temperature
				Bit 12 = 1	SD operating hours
				Bit 11 = 1	SD alarm codes
				Bit $10 = 1$	SD oil pressure
				Bit $9 = 1$	SD engine speed
				Bit 8 = 1	Reserve (MDEC bit 8)
				Bit 7 = 1	Reserve (MDEC bit 7)
				Bit $6 = 1$	Reserve (MDEC bit 6)
				Bit $5 = 1$	Reserve (MDEC bit 5)
				Bit $4 = 1$	Reserve (MDEC bit 4)
				Bit $3 = 1$	Reserve (MDEC bit 3)
				Bit 2 = 1	Reserve (MDEC bit 2)
				Bit $1 = 1$	Reserve (MDEC bit 1)
27/2	82	Reserve (MDEC bit 11)		Bit $0 = 1$	SD speed request
27/2 27/3	83 84	Reserve (MDEC bit 11) Reserve (MDEC bit 12)			
27/3	85	Reserve (MDEC bit 12)			
28/2	86	Reserve (MDEC bit 15)			
28/3	87	Reserve (MDEC bit 15)		Bit 15 = 1	Internal
-					
				Bit 9 = 1	Internal
				Bit 8 = 1	Interface error Y1Y5 by MDEC
				Bit 7 = 1	Internal
				Bit $0 = 1$	Internal
29/1	88	Reserve (MDEC bit 16)			
29/2	89	Reserve (MDEC bit 17)			
29/3	90	Reserve (MDEC bit 18)			

NOTE

The analog values are overwritten with "0" in case of an interface error.

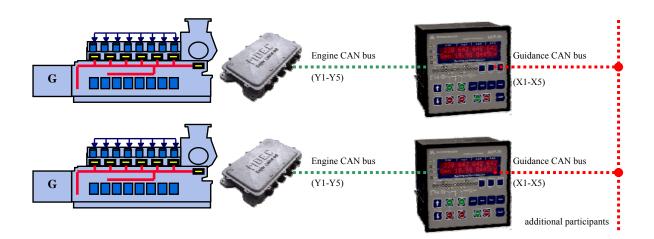
MDEC Connection

Coupling for set point value transfer of the GCP unit and the mtu Diesel Engine Control (MDEC) can be realized alternatively using one of the following connection s:

... via three-position controllers

(possible in every standard unit with three-position controller),

... via analog controller outputs


(possible in every standard unit with analog controller outputs with 20 mA signal), or

... via engine CAN bus

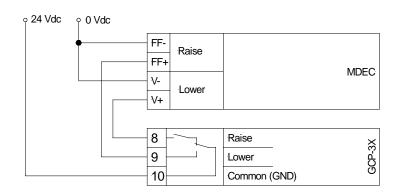
NOTE

If you order an MDEC at mtu please note this on your order to mtu. Different versions are available and mtu has to implement another remote set point value module in the MDEC. The MDEC would alternatively be delivered with remote set point value via three-position controller, analog controller or CAN bus connection.

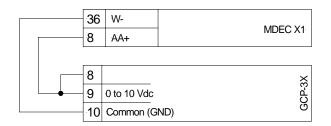
The following functions are additionally available using a CAN bus coupling:

• remote set point value of speed	GCP	\rightarrow	MDEC
• display of selected values	GCP	←	MDEC
• display of selected sensors	GCP	←	MDEC
• display of selected alarms	GCP	←	MDEC

Connection to GCP



NOTE


For function and configuration of the MDEC please see the manual of the manufacturer.

Set point Specification Via Three-Step Controller

Set point Specification Via Analog Controller

The controller output at the GCP has to be set to 0 to 10 V for this.

Set point Specification Via CAN

Except of the CAN connection described earlier, no further connection between MDEC and GCP has to be established.

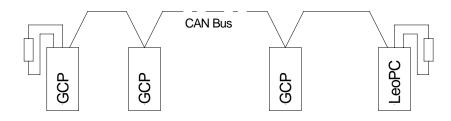
Engine Bus Visualization Via LeoPC1 (MDEC and J1939)

NOTE

This function is only implemented from Software version 4.3010.

The following MDEC or J1939 data can be displayed via LeoPC1 in the sensors/actors level (if supported by the used ECU):

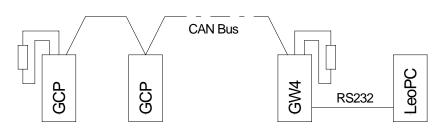
Engine speed	[rpm]
Oil pressure	[bar or psi]
Oil temp.	[°C or °F]
Coolant temp.	[°C or °F]
Fuel temp.	[°C or °F]
Coolant level	[%]
Consumption	[l/h]
Alarm codes	



NOTE

The display "0" appears for an interface error MDEC/J1939. If a measurand does not exist for J1939, "0" is displayed here as well.

The displayed unit depends on the settings in parameter block Measuring. Further information about this can be found in the LeoPC1 manual (37146).


CAN Bus Connection via A CAN Card or an USB to CAN Adapter to LeoPC1

Observe the notes about termination (termination resistor) of the CAN bus under Connection on page 5. Ensure that the CAN card or the CAN to USB adapter at the LeoPC1 computer is terminated properly.

Up to 14 GCPs can be connected as participants.

CAN Bus Connection via A GW 4 and the RS-232 Interface to LeoPC1

Observe the notes about termination (termination resistor) of the CAN bus under Connection on page 5. Up to 4 GCPs can be connected to a GW 4.

Configuration of the GW 4:

Since the GCP uses the extended block to visualize the engine control data , the GW 4 has to be configured to extended blocks as well. See manual GW 4 (37133).

Configuration of the GCP:

Only odd generator numbers may be configured at the GCPs!

Adaptation of the LeoPC1 file

(only necessary if the engine control data of engines with a generator number different from 1 are to be visualized.)

The modification can be made using a text editor. It is strongly recommended to store a copy of the original file in a different directory or under a different name for security reasons.

In order to only display the odd machine numbers with visualization, the LeoPC1 file $xxxx-xxxx_x_pyzz.cfg$ ($xxxx-xxxx_x = part$ number, y = number of machines, zz = language) has to be modified as described in the following:

Example for 2 machines:

The file for 3 machines has to be used and the 2^{nd} machine (or the machines with even numbers for more machines) has to be commented out with "*i* * ".

Original location in the .cfg file:

```
;* Definition: levels, used devices, options - Ansichten, verwendete Geräte,
Optionen
[PLANT]
NAME=Demo
DEF_VIEW=1
ENGINE1="Generator 01"
ENGINE2="Generator 02"
ENGINE3="Generator 03"
```

Modified .cfg file:

```
;* Definition: levels, used devices, options - Ansichten, verwendete Geräte,
Optionen
[PLANT]
NAME=Demo
DEF_VIEW=1
ENGINE1="Generator 01"
;*ENGINE2="Generator 02"
ENGINE3="Generator 03"
```

Appendix A. List of Parameters

Unit number	P/N	Rev					
Version	GCP-30	GCP-30					
Project							
Serial number	S/N	_ Date					
Access	Parameter	Setting range	Default value	Custome	er setting		
	ONFIGURATION aud rate	100 / 125 / 250 / 500 l-D d	250 l-D d				
		100 / 125 / 250 / 500 kBaud	250 kBaud	-	-		
IKD 1 CONFIGU	on bus	YES / NO	NO				
	nment 1. relay on IKD1	**************************************	1				
	nment 2. relay on IKD1	*	2				
-	nment 3. relay on IKD1	*	3				
	nment 4. relay on IKD1	*	4				
-	nment 5. relay on IKD1	*	5				
	nment 6. relay on IKD1	*	6				
-	nment 7. relay on IKD1	*	7				
-	nment 8. relay on IKD1	*	8				
_	text DI1 IKD1 (term. 5)	16 digit configurable text	IKD1 DI 1				
L Error	text DI2 IKD1 (term. 6)	16 digit configurable text	IKD1 DI 2				
	text DI3 IKD1 (term. 7)	16 digit configurable text	IKD1 DI 3				
L Error	text DI4 IKD1 (term. 8)	16 digit configurable text	IKD1 DI 4				
L Error	text DI5 IKD1 (term. 9)	16 digit configurable text	IKD1 DI 5				
L Error	text DI6 IKD1 (term.10)	16 digit configurable text	IKD1 DI 6				
L Error	text DI7 IKD1 (term.11)	16 digit configurable text	IKD1 DI 7				
L Error	text DI8 IKD1 (term.12)	16 digit configurable text	IKD1 DI 8				
IKD 2 CONFIGU	JRATION	0 0		1			
	on bus	YES / NO	NO	ΔΥΔ Ν	ΔΥ ΔΝ		
L Assign	nment 1. relay on IKD2	*	1				
L Assign	nment 2. relay on IKD2	*	2				
L Assign	nment 3. relay on IKD2	*	3				
	nment 4. relay on IKD2	*	4				
-	nment 5. relay on IKD2	*	5				
-	nment 6. relay on IKD2	*	6				
-	nment 7. relay on IKD2	*	7				
_	nment 8. relay on IKD2	*	8				
	text DI1 IKD2 (term. 5)	16 digit configurable text	IKD2 DI 1				
	text DI2 IKD2 (term. 6)	16 digit configurable text	IKD2 DI 2				
	text DI3 IKD2 (term. 7)	16 digit configurable text	IKD2 DI 3				
	text DI4 IKD2 (term. 8)	16 digit configurable text	IKD2 DI 4				
	text DI5 IKD2 (term. 9)	16 digit configurable text	IKD2 DI 5				
	text DI6 IKD2 (term.10)	16 digit configurable text	IKD2 DI 6				
	text DI7 IKD2 (term.11)	16 digit configurable text	IKD2 DI 7				
	text DI8 IKD2 (term.12)	16 digit configurable text	IKD2 DI 8		<u> </u>		
ST 3 CONFIGUR							
L ST3 O	n bus	YES / NO	NO	$\Box Y \Box N$	$\Box Y \Box N$		

Access	Parameter	Setting range	Default value	Customer setting			
MDEC (IDEC CONFIGURATION						
	MDEC	OFF / ON	OFF	$\Box 0 \Box 1$			
	MDEC protocol	V302 / V303 / V304	V302				
J1939 C	ONFIGURATION						
		OFF		□ OFF	□ OFF		
		Standard	OFF	□ Std	□ Std		
	J1939	EMR2		□ EMR2	□ EMR2		
	01939	S6		□ S6	□ S6		
		EMS2		□ EMS2	□ EMS2		
		ADEC		\Box ADEC	□ ADEC		
	Remote con.J1939	YES / NO	NO	$\Box Y \Box N$	ΠΥΠΝ		
		OFF		□ OFF	□ OFF		
	J1939 Droop	Parallel	OFF	Parallel	□ Parallel		
		Permanent		D Perm.	Perm.		
	ECU unit numb.	0 to 255	000				
	GCP device numb.	0 to 255	003				
	max speed offset	0 to 999 rpm	100				
INTERF	ACE MONITORING						
	Monitoring ECU Values	OFF / ON	OFF	$\Box 0 \Box 1$	$\Box 0 \Box 1$		
L	ECU interface monitoring	YES / NO	NO	ΔΥΔ Ν	$\Box Y \Box N$		

L This parameter may only be accessed via LeoPC1 depending on the unit

* refer to the Relay Manager section of the configuration manual for more info

We appreciate your comments about the content of our publications. Please send comments to: <u>stgt-documentation@woodward.com</u> Please include the manual number from the front cover of this publication.

Woodward GmbH Handwerkstrasse 29 - 70565 Stuttgart - Germany Phone +49 (0) 711-789 54-0 • Fax +49 (0) 711-789 54-100 sales-stuttgart@woodward.com

Homepage

http://www.woodward.com/power

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address/phone/fax/e-mail information for all locations is available on our website (www.woodward.com).

2007/2/Stuttgart