

# Manual 85586V2 (Revision G) Original Instructions



# AtlasPC<sup>™</sup> Digital Control Hardware Manual

Volume 2

**Installation and Operation Manual** 



General Precautions Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment.

Practice all plant and safety instructions and precautions.

Failure to follow instructions can cause personal injury and/or property damage.



Revisions

This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, on the publications page of the Woodward website:

www.woodward.com/publications

The latest version of most publications is available on the *publications page*. If your publication is not there, please contact your customer service representative to get the latest copy.



**Proper Use** 

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.



If the cover of this publication states "Translation of the Original Instructions" please note:

# Translated Publications

The original source of this publication may have been updated since this translation was made. Be sure to check manual 26311, Revision Status & Distribution Restrictions of Woodward Technical Publications, to verify whether this translation is up to date. Out-of-date translations are marked with . Always compare with the original for technical specifications and for proper and safe installation and operation procedures.

Revisions—Changes in this publication since the last revision are indicated by a black line alongside the text.

# **Contents**



Volume II contains the AtlasPC $^{\text{TM}}$  detailed Distributed I/O information. For all other hardware information, see Volume I.

| WARNINGS AND NOTICES                                                | V   |
|---------------------------------------------------------------------|-----|
| ELECTROSTATIC DISCHARGE AWARENESS                                   | VI  |
| DISTRIBUTED I/O                                                     | 1   |
| CHAPTER 1. PC104 PROFIBUS INTERFACE                                 | 2   |
| Introduction                                                        |     |
| Profibus Software and Hardware Requirements  Hardware for End Users |     |
| Software for Application Developers                                 |     |
| CHAPTER 2. PC104 DEVICENET INTERFACE                                | 15  |
| Introduction                                                        |     |
| DeviceNet Software and Hardware Requirements                        |     |
| Hardware for End Users                                              | 15  |
| Software for Application Developers                                 |     |
| CHAPTER 3. PC104 ETHERNET INTERFACE                                 |     |
| Introduction                                                        |     |
| Ethernet Software and Hardware Requirements Hardware for End Users  |     |
| Software for Application Developers                                 |     |
| CHAPTER 4. SERIAL (MODBUS) INTERFACE                                |     |
| Introduction                                                        |     |
| Serial Software and Hardware Requirements                           | 40  |
| Hardware for End Users                                              |     |
| Software for Application Developers                                 | 46  |
| CHAPTER 5. PC104 CANOPEN INTERFACE                                  | 48  |
| CHAPTER 6. DISTRIBUTED I/O EXAMPLES                                 | 49  |
| Introduction                                                        | 49  |
| Allen-Bradley Flex I/O Example                                      |     |
| Automation Direct Terminator I/O Example                            | 127 |

# **Illustrations and Tables**

| Figure 2-1. Typical CAN Network Example                                                                         | 19 |
|-----------------------------------------------------------------------------------------------------------------|----|
| Figure 6-1. Allen-Bradley Flex I/O Configuration                                                                | 51 |
| Figure 6-2. AtlasPC Chassis GAP Block                                                                           |    |
| Figure 6-3. Example of GAP Application FB_Module                                                                | 54 |
| Figure 6-4. FB_EQUIP Block Example                                                                              | 55 |
| Figure 6-5. 3170-PDP Network Interface Memory Map                                                               | 59 |
| Figure 6-6. Example of 3170-PDP Memory Map Read GAP Block                                                       | 60 |
| Figure 6-7. Example of 1794-IB16 Module Wiring                                                                  | 61 |
| Figure 6-8. 1794-IB16 Memory Map                                                                                |    |
| Figure 6-9. 1794-IB16 Input Filter Time Bit Map                                                                 |    |
| Figure 6-10. Example of 1794-IB16 Write GAP Block                                                               |    |
| Figure 6-11. Example of 1794-IB16 Discrete Input Read GAP Blocks.                                               |    |
| Figure 6-12. Example of 1794-OV16 Module Wiring                                                                 |    |
| Figure 6-13. 1794-OV16 Module Memory Map                                                                        |    |
| Figure 6-14. Example of 1794-OV16 GAP Write Blocks                                                              |    |
| Figure 6-15. Example of 1794-OW8 Module Wiring                                                                  |    |
| Figure 6-16. 1794-OW8 Module Memory Map                                                                         |    |
| Figure 6-17. Example of 1794-OW8 GAP Write Blocks                                                               |    |
| Figure 6-18. Example of 1794-IE8/B Module Wiring                                                                |    |
| Figure 6-19. 1794-IE8/B Input Module Memory Map                                                                 |    |
| Figure 6-20. 1794-IE8/B Output Module Memory Map                                                                |    |
| Figure 6-21. Example of 1794-IE8/B Read and Write GAP Blocks                                                    |    |
| Figure 6-22. 1794-IE8/B and 1794-OE4/B Analog Data Format Table.                                                |    |
| Figure 6-23. Example of 1794-IE8/B GAP Analog Write Blocks                                                      |    |
| Figure 6-24. Example of 1794-OE4/B Module Wiring                                                                |    |
| Figure 6-25. 1794-OE4/B Module Input Memory Map                                                                 |    |
| Figure 6-26. 1794-OE4/B Module Output Memory Map                                                                |    |
| Figure 6-20. 1794-OE4/B Write Range Selection Bits                                                              |    |
| Figure 6-27. 1794-0E4/B Write Range Selection bits Figure 6-28. Example of 1794-0E4/B Read and Write GAP Blocks |    |
| Figure 6-29. Example of 1794-0E4/B GAP Analog Write Blocks                                                      |    |
|                                                                                                                 |    |
| Figure 6-30. Example of 1794-IT8 Module Wiring                                                                  |    |
| Figure 6-31, 1794-IT8 Module Input Memory Map                                                                   |    |
| Figure 6-32, 1794-IT8 Module Output Memory Map                                                                  |    |
| Figure 6-33. 1794-IT8 Write Word 0                                                                              |    |
| Figure 6-34. 1794-IT8 Hardware First Notch Filter                                                               |    |
| Figure 6-35. 1794-IT8 Write Word 1 and 2                                                                        | 80 |
| Figure 6-36. Example of 1794-IT8 Read and Write GAP Blocks                                                      | 81 |
| Figure 6-37. 1794-IT8 Input Scaling                                                                             |    |
| Figure 6-38. Example of 1794-IT8 GAP Analog Read Blocks                                                         |    |
| Figure 6-39. Example of 1794-IR8 Module Wiring                                                                  |    |
| Figure 6-40. 1794-IR8 Module Input Memory Map                                                                   |    |
| Figure 6-41. 1794-IR8 Module Output Memory Map                                                                  |    |
| Figure 6-42. 1794-IR8 Write Word 0                                                                              |    |
| Figure 6-43. 1794-IT8 Hardware First Notch Filter                                                               |    |
| Figure 6-44. 1794-IT8 Write Word 1 and 2                                                                        |    |
| Figure 6-45. Example of 1794-IR8 Read and Write GAP Blocks                                                      |    |
| Figure 6-46.1794-IR8 Input Scaling                                                                              | 88 |
| Figure 6-47. Example of 1794-IR8 GAP Analog Read Blocks                                                         |    |
| Figure 6-48. Allen-Bradley Flex I/O Configuration                                                               |    |
| Figure 6-49. MODBUS_M Block Example                                                                             |    |
| Figure 6-50. MODBUS_M Block RPT Window Example                                                                  |    |
| Figure 6-51. MODBUS_M Block Group 1 Analog Read RPT Example                                                     |    |
| Figure 6-52. MODBUS_M Block Group 2 Analog Read RPT Example                                                     |    |
| Figure 6-53. MODBUS_M Block Group 2 Analog Write RPT Example                                                    | 96 |
| Figure 6-54. MODBUS_M Block Group 3 Analog Write RPT Example                                                    |    |

ii Woodward

# **Illustrations and Tables**

| Figure 6-55. MODBUS_M Block Group 4 Analog Write RPT Example          | 97  |
|-----------------------------------------------------------------------|-----|
| Figure 6-56. 3170-MBS Status Information Addresses                    | 99  |
| Figure 6-57. Example of 3170-MBS Memory Map Discrete Read GAP Blocks. | 99  |
| Figure 6-58. Example of 3170-MBS Memory Map Analog Read GAP Blocks    | 100 |
| Figure 6-59. Example of 1794-IB16 Module Wiring                       | 101 |
| Figure 6-60. 1794-IB16 Memory Map                                     | 101 |
| Figure 6-61. 1794-IB16 Input Filter Time Bit Map                      | 102 |
| Figure 6-62. Example of 1794-IB16 Read and Write GAP Blocks           | 102 |
| Figure 6-63. Example of 1794-OV16 Module Wiring                       |     |
| Figure 6-64. 1794-OV16 Module Memory Map                              |     |
| Figure 6-65. Example of 1794-OV16 GAP Write Blocks                    |     |
| Figure 6-66. Example of 1794-OW8 Module Wiring                        |     |
| Figure 6-67. 1794-OW8 Module Memory Map                               |     |
| Figure 6-68. Example of 1794-OW8 GAP Write Blocks                     | 106 |
| Figure 6-69. Example of 1794-IE8/B Module Wiring                      |     |
| Figure 6-70. 1794-IE8/B Input Module Memory Map                       |     |
| Figure 6-71. 1794-IE8/B Output Module Memory Map                      |     |
| Figure 6-72. Example of 1794-IE8/B Read and Write GAP Blocks          |     |
| Figure 6-73. 1794-IE8/B and 1794-OE4/B Analog Data Format Table       |     |
| Figure 6-74. Example of 1794-IE8/B GAP CALCULATE Scaling Blocks       |     |
| Figure 6-75. Example of 1794-OE4/B Module Wiring                      |     |
| Figure 6-76. 1794-OE4/B Module Input Memory Map                       |     |
| Figure 6-77. 1794-OE4/B Module Output Memory Map                      |     |
| Figure 6-78. 1794-OE4/B Write Range Selection Bits                    |     |
| Figure 6-79. Example of 1794-OE4/B Read and Write GAP Blocks          |     |
| Figure 6-80. Example of 1794-OE4/B GAP Analog Write Blocks            |     |
| Figure 6-81. Example of 1794-IT8 Module Wiring                        |     |
| Figure 6-82. 1794-IT8 Module Input Memory Map                         |     |
| Figure 6-83. 1794-IT8 Module Output Memory Map                        |     |
| Figure 6-84. 1794-IT8 Write Word 0                                    |     |
| Figure 6-85. 1794-IT8 Hardware First Notch Filter                     |     |
| Figure 6-86. 1794-IT8 Write Word 1 and 2                              |     |
| Figure 6-87. Example of 1794-IT8 Read and Write GAP Blocks            |     |
| Figure 6-88. 1794-IT8 Input Scaling                                   |     |
| Figure 6-89. Example of 1794-IT8 GAP Analog Read Blocks               |     |
| Figure 6-90. Example of 1794-IR8 Module Wiring                        |     |
| Figure 6-91. 1794-IR8 Module Input Memory Map                         |     |
| Figure 6-92. 1794-IR8 Module Output Memory Map                        |     |
| Figure 6-93. 1794-IR8 Write Word 0                                    |     |
| Figure 6-94. 1794-IT8 Hardware First Notch Filter                     |     |
| Figure 6-95. 1794-IT8 Write Word 1 and 2                              |     |
| Figure 6-96. Example of 1794-IR8 Read and Write GAP Blocks            | 126 |
| Figure 6-97. 1794-IR8 Input Scaling                                   |     |
| Figure 6-98. Example of 1794-IR8 GAP Analog Read Blocks               |     |
| Figure 6-99. Automation Direct Terminator I/O Configuration           |     |
| Figure 6-100. MODBUS_M Block Example                                  |     |
| Figure 6-101. T1K-MODBUS Adapter Addressing Table                     |     |
| Figure 6-102. MODBUS_M Block RPT Example                              |     |
| Figure 6-103. MODBUS M Block Boolean Write RPT Example                | 134 |
| Figure 6-104. MODBUS_M Block Boolean Read RPT Example                 |     |
| Figure 6-105. MODBUS_M Block Analog Read RPT Example                  |     |
| Figure 6-106. MODBUS_M Block Analog Write RPT Example                 |     |
| Figure 6-107. T1K-MODBUS Dip Switch Settings                          |     |
| Figure 6-108. Automation Direct Modbus RS-232 Serial Connection       |     |
| Figure 6-109. T1K-08ND3 Sink/External Power Configuration             |     |
| Tigalo o 100. Titt oolydd dillwextelliai i dwel cullligulatiull       | 100 |

Woodward iii

# **Illustrations and Tables**

| Figure 6-110 Example of T1K-08ND3 Module Wiring                  | 139 |
|------------------------------------------------------------------|-----|
| Figure 6-111. T1K-08ND3 Memory Map                               | 139 |
| Figure 6-112. Example of T1K-08ND3 Read GAP Blocks               | 139 |
| Figure 6-113. T1K-16ND3 Sink/External Power Configuration        |     |
| Figure 6-114 Example of T1K-16ND3 Module Wiring                  | 141 |
| Figure 6-115. T1K-16ND3 Memory Map                               | 141 |
| Figure 6-116. Example of T1K-16ND3 Read GAP Blocks               |     |
| Figure 6-117. Example of T1K-16ND3 Module to Relay Module Wiring |     |
| Figure 6-118. T1K-16TD1 Module Memory Map                        | 143 |
| Figure 6-119. Example of T1K-16TD1 GAP Write Blocks              |     |
| Figure 6-120. Example of T1K-08TRS Module Wiring                 |     |
| Figure 6-121. T1K-08TRS Module Memory Map                        |     |
| Figure 6-122. Example of T1K-08TRS GAP Write Blocks              |     |
| Figure 6-123. Example of T1F-16AD-1 Module Wiring                |     |
| Figure 6-124. T1F-16AD-1 Analog Input Module Memory Map          |     |
| Figure 6-125. T1F-16AD-1 Current Input Module Resolution         |     |
| Figure 6-126. Example of T1F-16AD-1 GAP CURVE_2D Scaling Blocks  |     |
| Figure 6-127. Example of T1F-16DA-1 Module Wiring                |     |
| Figure 6-128. T1F-16DA-1 Module Memory Map                       |     |
| Figure 6-129. T1F-16DA-1 Control Byte Table                      |     |
| Figure 6-130. Example of T1F-16DA-1 Control Byte GAP Block       |     |
| Figure 6-131. T1F-16DA-1 Current Output Module Resolution        |     |
| Figure 6-132. Example of T1F-16DA-1 GAP Analog Write Blocks      |     |
| Figure 6-133. Example of T1F-14THM Module Wiring                 |     |
| Figure 6-134. T1F-14THM Thermocouple Module Memory Map           |     |
| Figure 6-135 for T1F-14THM Jumper configuration Tables           |     |
| Figure 6-136 for T1F-14THM Jumper Locations                      |     |
| Figure 6-137. Example of T1F-14THM GAP DIVIDE Blocks             | 157 |
|                                                                  |     |
| Table 1-1. Profibus—Type A Cable                                 | 3   |
| Table 1-2. Profibus—Type B Cable                                 |     |
| Table 1-3. Belden Profibus cable                                 |     |
| Table 1-4. Profibus—Siemens RS-485 Bus Connector / Plastic       |     |
| Table 1-5. Profibus—Siemens RS-485 Bus Connector / Metal         |     |
| Table 1-6. I/O Connector Pinout                                  |     |
| Table 2-1. Thick Cable Requirements                              |     |
| Table 2-2. Belden DeviceNet cable                                |     |
| Table 3-1. Category 5 Cable Requirements                         |     |
| Table 3-2. Belden Ethernet cable                                 | 35  |
| Table 3-3. RJ45 10/100 Base-TX Pinout                            |     |
| Table 6-1. Profibus Bit Address Spreadsheet                      |     |
| Table 6-2. Applicom Error Num Table Definition                   |     |
| Table 6-3. Example of Boolean Address Order                      |     |
| Table 6-4. Modbus Word Address Spreadsheet                       |     |
| Table 6-5. MODBUS_M Exception Errors                             |     |
| Table 6-6. Modbus Word Address Spreadsheet                       |     |
| Table 6-7. MODBUS M Exception Errors                             |     |

iv Woodward

# **Warnings and Notices**

# **Important Definitions**



This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

- **DANGER**—Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- WARNING—Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- CAUTION—Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
- **NOTICE**—Indicates a hazard that could result in property damage only (including damage to the control).
- **IMPORTANT**—Designates an operating tip or maintenance suggestion.

# **<b>∴WARNING**

Overspeed /
Overtemperature /
Overpressure

The engine, turbine, or other type of prime mover should be equipped with an overspeed shutdown device to protect against runaway or damage to the prime mover with possible personal injury, loss of life, or property damage.

The overspeed shutdown device must be totally independent of the prime mover control system. An overtemperature or overpressure shutdown device may also be needed for safety, as appropriate.

# **MARNING**

Personal Protective Equipment The products described in this publication may present risks that could lead to personal injury, loss of life, or property damage. Always wear the appropriate personal protective equipment (PPE) for the job at hand. Equipment that should be considered includes but is not limited to:

- Eye Protection
- Hearing Protection
- Hard Hat
- Gloves
- Safety Boots
- Respirator

Always read the proper Material Safety Data Sheet (MSDS) for any working fluid(s) and comply with recommended safety equipment.



Start-up

Be prepared to make an emergency shutdown when starting the engine, turbine, or other type of prime mover, to protect against runaway or overspeed with possible personal injury, loss of life, or property damage.



Automotive Applications On- and off-highway Mobile Applications: Unless Woodward's control functions as the supervisory control, customer should install a system totally independent of the prime mover control system that monitors for supervisory control of engine (and takes appropriate action if supervisory control is lost) to protect against loss of engine control with possible personal injury, loss of life, or property damage.

# NOTICE

Battery Charging Device To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

# **Electrostatic Discharge Awareness**

# **NOTICE**

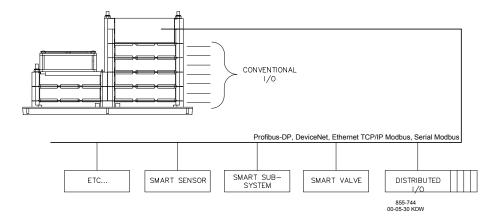
# **Electrostatic Precautions**

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts:

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

To prevent damage to electronic components caused by improper handling, read and observe the precautions in Woodward manual 82715, Guide for Handling and Protection of Electronic Controls, Printed Circuit Boards, and Modules.

Follow these precautions when working with or near the control.


- Avoid the build-up of static electricity on your body by not wearing clothing made of synthetic materials. Wear cotton or cotton-blend materials as much as possible because these do not store static electric charges as much as synthetics.
- 2. Do not remove the printed circuit board (PCB) from the control cabinet unless absolutely necessary. If you must remove the PCB from the control cabinet, follow these precautions:
  - Do not touch any part of the PCB except the edges.
  - Do not touch the electrical conductors, the connectors, or the components with conductive devices or with your hands.
  - When replacing a PCB, keep the new PCB in the plastic antistatic
    protective bag it comes in until you are ready to install it. Immediately
    after removing the old PCB from the control cabinet, place it in the
    antistatic protective bag.

vi Woodward

# Distributed I/O

The AtlasPC™ control supports industry standard field bus protocols to take advantage of distributed I/O products from alternate manufacturers. Through various networking options, expansion of the AtlasPC system is virtually unlimited. Currently, the AtlasPC control supports:

- PC104 Profibus Interface (Chapter 1)
- PC104 DeviceNet Interface (Chapter 2)
- PC104 Ethernet Interface (Chapter 3)
- Serial (Modbus) Interface (Chapter 4)
- PC104 CanOpen Interface (Chapter 5)



Chapter 6 contains examples of Distributed I/O.

# Chapter 1. PC104 Profibus Interface

# Introduction

This chapter has been divided into two sections, Hardware for End Users, and Software for Application Developers. The hardware section is aimed at customers that are applying the Atlas in a permanent installation. The software section is for customers that are developing software for the AtlasPC<sup>™</sup> control.

# **Profibus Software and Hardware Requirements**

- Atlas with Profibus Module
- Profibus Master Configuration Tool
- Profibus Diagnostic Utilities
- Profibus slave device GSD file(s)
- GAP Programming Tool 3.03 or later
- Profibus Cables and Connectors
- Slave Interface and Modules
- Device Memory Maps and Scaling (Manuals)
- Woodward Interface Tools

## Hardware for End Users

#### **Profibus Module**

The Profibus hardware module used on the AtlasPC control system is a PC/104 form factor ApplicomIO PC104-DPIO board, equipped with one Profibus port, capable of handling Profibus-DP (Distributed Peripherals) protocol in both Master (Class1, Class2) and Slave modes up to 12Mbps. This module operates on the PC104 bus and has a PC104 pass through connector to allow use with other PC104 modules depending on the Atlas configuration.

# **Electrical and Technical Specifications**

Processor: Intel 80386EX. 24 MHz

Memory: 4 Mbyte DRAM, 512 K flash memory

Network Speeds Supported: 9600 kbps to 12 Mbps

Interface: RS-485 with 500 Vdc galvanic isolation

Interface Connector: Isolated DB9F I/O connector

Power: 4.0 W max (3.75 W typical)

## **Interface Cables and Connectors**

The Profibus network is a balanced transmission line corresponding to the standard EIA RS-485, terminated at both ends. The Profibus standard EN50170 defines two variations of the bus cable for Profibus-FMS and Profibus-DP. Profibus Type A cable is preferred and recommended for all uses.

- **Type A**—recommended for high transmission speeds (> 500 kBaud) and permits doubling of the network distance in comparison to Type B.
- Type B—should only be used at low baud rates and low requirements on the network distances.

| Impedance:          | 135 up to 165 Ω at a frequency of 3 to 20 MHz  |  |
|---------------------|------------------------------------------------|--|
| Cable capacitance:  | < 30 pF/m                                      |  |
| Core diameter:      | > 0.34 mm <sup>2</sup> , corresponds to 22 AWG |  |
| Cable type:         | twisted pair cable. 1x2 or 2x2 or 1x4 lines    |  |
| Resistance:         | < 110 Ω/km                                     |  |
| Signal attenuation: | max. 9 dB over total length of line section    |  |
| Shielding:          | CU shielding braid or shielding braid and foil |  |

Table 1-1. Profibus—Type A Cable

| Impedance:          | 135 up to 165 Ω at a frequency of > 100 kHz    |  |
|---------------------|------------------------------------------------|--|
| Cable capacitance:  | typ. < 60 pF/m                                 |  |
| Core diameter:      | > 0.22 mm <sup>2</sup> , corresponds to 24 AWG |  |
| Cable type:         | twisted pair cable. 1x2 or 2x2 or 1x4 lines    |  |
| Signal attenuation: | max. 9 dB over total length of line section    |  |
| Shielding:          | CU shielding braid or shielding braid and foil |  |

Table 1-2. Profibus—Type B Cable

#### **Recommended Bulk Cable**

Cable manufacturer Belden is widely available in North America, and Siemens is available in Europe. These manufacturers are listed in the table below. Neither manufacturer has any exclusive rights to Profibus cable, and other suitable alternatives are available from other manufacturers. Both cables below are rated as suitable for Profibus cabling and may also be used for drop cabling. Alternative cables may not use the same color coding on the individual conductors.

| Manufacturer | Part Number                         | Website                   |
|--------------|-------------------------------------|---------------------------|
| Belden       | 3079A Profibus Cable                | www.belden.com            |
| Siemens      | Profibus-DP, STD, 6XV1830-<br>0EH10 | www.ad.siemens.de/simatic |

The cable specification below is provided for convenience and is typical for the Profibus industry.

| Belden 3079A Profibus<br>Cable |                                                       |
|--------------------------------|-------------------------------------------------------|
| Weight:                        | 57 lbs/1,000 ft (~85 kg/1000 m)                       |
| Ratings:                       | NEC PLTC CL2 CMG CEC CMG                              |
| Conductor:                     | #22 AWG solid high conductivity Cu (~0.3 mm²)         |
| Insulation:                    | Cellular Polyethylene                                 |
| Tested:                        | 300 MHz                                               |
| Nom. O.D.:                     | 0.315" (8.00 mm)                                      |
| Shield:                        | Beldfoil®, 100% coverage                              |
| Jacket:                        | Purple or Gray, PVC, optional blue intrinsically safe |
| Impedance:                     | 150 Ω                                                 |
| Velocity Of Prop. :            | 78% (nom.)                                            |
| Mutual Capacitance:            | 9.0pF/ft (nom.) (~30 pF/m)                            |
| Attenuation:                   | 0.27 dB/100 ft @ 0.2 MHz (~0.89 dB/100 m)             |
|                                | 0.67 dB/100 ft @ 4.0 MHz (~2.20 dB/100 m)             |
|                                | 1.37 dB/100 ft @ 16.0 MHz (~4.49 dB/100 m)            |
|                                | 3.75 dB/100 ft @ 100 MHz (~12.30 dB/100 m)            |
|                                | 6.52 dB/100 ft @ 300 MHz (~21.39 dB/100 m)            |
| Standard Lengths:              | 1000, 2000, and 3600 ft (~305, 610, and 1097 m)       |

Table 1-3. Belden Profibus cable

## **Profibus Cable Connectors**

The typical Profibus cable connector is a sub-D 9-pin male connector. The following products are provided for reference.

## **Recommended Connector**

| Manufacturer | Part Number                       | Website                   |
|--------------|-----------------------------------|---------------------------|
| Siemens      | Bus Connector 6ES7 972-0BA11-0XA0 | www.ad.siemens.de/simatic |

## **Alternate Connectors**

| Manufacturer    | Part Number                       | Website                   |
|-----------------|-----------------------------------|---------------------------|
| ERNI            | Erbic PROFIBUS Connectors         | www.erni.com              |
| Siemens         | Bus Connector 6GK1500-0EA02       | www.ad.siemens.de/simatic |
| Phoenix Contact | SUBCON Profibus Connector–2744348 | www.phoenixcon.com        |

# **Profibus Connector Specifications**

The following connectors are typical for Profibus and are provided for reference.

| Name:              | Bus Connector                         | www.ad.siemens.de/simatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mfr:               | Siemens                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P/N:               | 6ES7 972-0BA11-0XA0                   | Tracks, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Connector:         | DB9M                                  | The second secon |
| Transmission Rate: | 12 Mbits/sec                          | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Shielding:         | Plastic case with internal shid clamp |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bus Termination:   | Terminating resistor slide switch     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cable Ports:       | (2) for daisy chain use, 90° exit     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cable Connection:  | 4 Internal screw terminal blocks      | [44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dim (WxHxD):       | 15.8 mm x 54 mm x 34 mm               | <b>英葉原管</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Table 1-4. Profibus—Siemens RS-485 Bus Connector / Plastic

| Name:              | Bus Connector                       | www.ad.siemens.de/simatic |
|--------------------|-------------------------------------|---------------------------|
| Mfr:               | Siemens                             |                           |
| P/N:               | 6GK1500-0EA02                       |                           |
| Connector:         | DB9M                                |                           |
| Transmission Rate: | 12 Mbits/sec                        |                           |
| Shielding:         | Metal case with internal shid clamp | 3 3                       |
| Bus Termination:   | Terminating resistor slide switch   | • (a) (b)                 |
| Cable Ports:       | (2) for daisy chain use             |                           |
| Cable Connection:  | 4 Internal screw terminal blocks    |                           |
| Dim (WxHxD):       | 15 mm x 57 mm x 39 mm               |                           |
| ,                  |                                     |                           |
|                    |                                     |                           |

Table 1-5. Profibus—Siemens RS-485 Bus Connector / Metal

#### **Profibus Connector Pinout**

| Connector             | Signal Mnemonic                |
|-----------------------|--------------------------------|
| DB9F                  | Shielded DB9 female receptacle |
| \$ 1<br>00000<br>0000 |                                |
| 1                     |                                |
| 2                     |                                |
| 3                     | RxD/TxD—P                      |
| 4                     |                                |
| 5                     | GND                            |
| 6                     | +5 V                           |
| 7                     |                                |
| 8                     | RxD/TxD—N                      |
| 9                     |                                |
| Shield                | AC coupled to Earth Ground     |

Table 1-6. I/O Connector Pinout

# **Profibus Slave Hardware**

The AtlasPC control system can control Profibus slave modules from many different manufacturers. With the exception of Woodward-manufactured devices, Woodward makes no expressed or implied statement of suitability of these devices. It is the user's responsibility to ensure EMC compliance of their system, if necessary, by using distributed modules that are CE compliant. The following Profibus slave hardware has been tested with the AtlasPC control to confirm functionality.

1) All Woodward devices designed for Profibus

2) Allen-Bradley Flex I/O



| Part Number | Description                                                       |
|-------------|-------------------------------------------------------------------|
| 3170-PDP    | I/O Network Interface for Profibus (Slave) (ProSoft Technologies) |
| 1794-IB16   | Discrete Input (Sink)                                             |
| 1794-OV16   | Discrete Output (Sink)                                            |
| 1794-OW8    | Discrete Output (Relay)                                           |
| 1794-IE8/B  | Analog Input (Current)                                            |
| 1794-OE4/B  | Analog Output (Current)                                           |
| 1794-IT8    | Thermocouple Input                                                |
| 1794-CJC2   | Cold Junction                                                     |
| 1794-IR8    | RTD Input                                                         |
| 1794-TB3S   | Terminal Base                                                     |
| 1794-TB3TS  | Terminal Base                                                     |

3) Automation Direct Terminator I/O



| Part Number | Description             |
|-------------|-------------------------|
| T1K-01AC    | Power Supply            |
| T1K-01DC    | Power Supply            |
| T1H-PBC     | Profibus Interface      |
| T1K-08ND3   | Discrete Input (Sink)   |
| T1K-16ND3   | Discrete Input (Sink)   |
| T1K-16TD1   | Discrete Output         |
| T1K-08TRS   | Discrete Output (Relay) |
| T1F-16AD-1  | Analog Input (Current)  |
| T1F-16DA-1  | Analog Output (Current) |
| T1F-14THM   | Thermocouple Input      |
| T1K-08B-1   | Terminal Base           |
| T1K-16B-1   | Terminal Base           |

# **Software for Application Developers**



It is possible to disrupt an existing Profibus network by attaching an improperly configured device. To prevent problems on your existing Profibus network, read this chapter before connecting the AtlasPC Profibus port to a network.

# **IMPORTANT**

Many end users will be purchasing pre-programmed AtlasPC units and will not need the information in this section. The information below is aimed at programmers using the GAP programming tool provided by Woodward. The information provided here covers the basics. For more detail, refer to Woodward software manual 26103, Woodward NT Real Time Operating System Service and Interface Tools or software manual 26199, Woodward VxWorks Real Time Operating System.

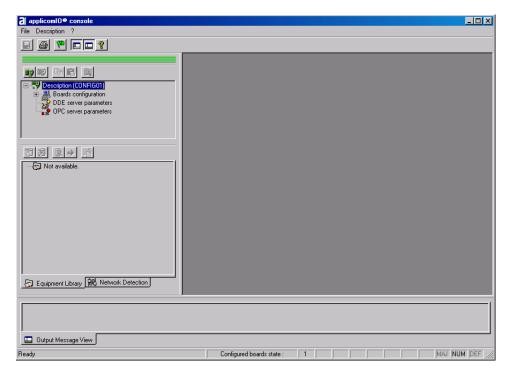
The information in this section is intended for customers that create their own GAP programs for the AtlasPC platform and who are using a Profibus network.

Programmers will need the following:

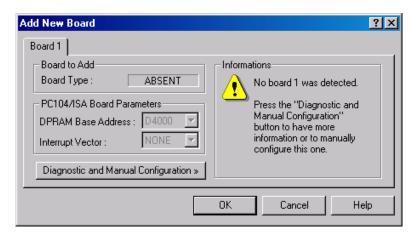
- ApplicomIO configuration software CD-ROM (supplied with the AtlasPC control)
- GSD file(s) for slave module(s)
- Device memory maps and scaling (manuals)
- GAP™ Programming Tool 3.03 or later to create the application (This can be downloaded from our website: www.woodward.com/ic/software)
- For more information on these and additional software tools mentioned in this chapter, see Woodward software manual 26103 (NT RTOS) or 26199 (VxWorks RTOS).

The AtlasPC control is configured to communicate with a Profibus network by performing the following steps:

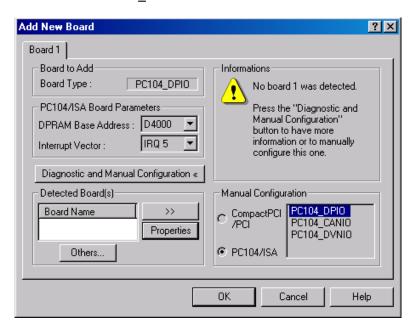
- 1. Verify that the Atlas contains a Profibus module.
- 2. Determine slave and I/O modules to be used.
- 3. Determine order of I/O modules.
- Obtain GSD file(s).
- 5. Create Profibus Configuration using the Profibus Configuration Tool.
- 6. Review the Profibus slave manuals and understand the hardware addressing.
- 7. Create GAP application which reads and writes to the Profibus I/O.
- 8. Transfer Configuration files and GAP application to AtlasPC control.
- 9. Start GAP application.


#### **Profibus Software Configuration (Configuration)**

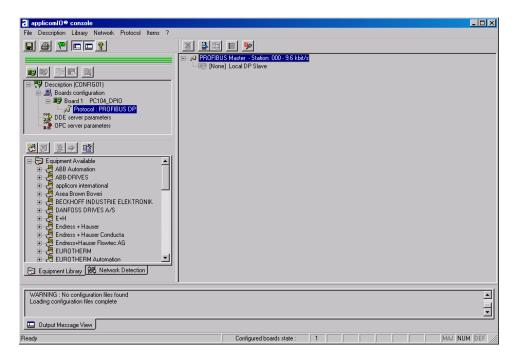
The Profibus network is configured using a Profibus Configuration Tool provided on CD-ROM with the AtlasPC control (ApplicomIO 2.1 Console). This tool supports defining the AtlasPC Profibus board as a master or slave device. For master operation, the slave devices are defined and configured by importing their GSD files and assigning network addresses. Once the Profibus I/O configuration is completed, it must be downloaded to the AtlasPC control and stored with the GAP application.


The Profibus master interface card in the AtlasPC control is manufactured by Applicom International. All Applicom cards used in AtlasPC systems share IRQ 5. Even though they can use other IRQ settings, it is necessary that they share IRQ 5 for proper operation and to prevent conflict with other devices in the AtlasPC system. All IRQs are factory set and must not be changed by the end user.

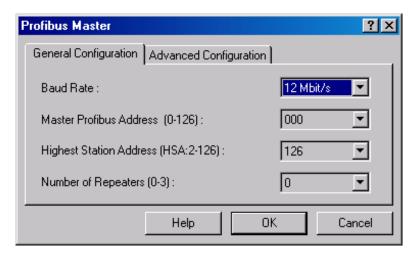
All Applicom cards used in AtlasPC systems must use the same Base Address of D4000 when configured in the ApplicomIO Console software. The following example will show how to use the Applicom configuration tool.


- a. Run ApplicomIO 2.1 Console.
- b. Under File, select Configuration Manager. Select New if a new configuration is desired, or select an existing configuration listed. In this example, the configuration was named Config01. Application will close and require a restart when a new configuration is selected.




- c. Under Board Configuration, select Add Board.
- d. Under Add New Board, select Diagnostic and Manual Configuration.

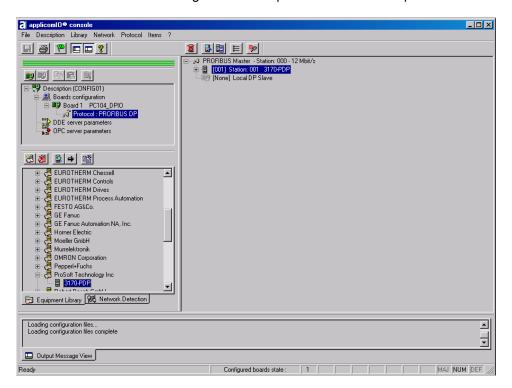


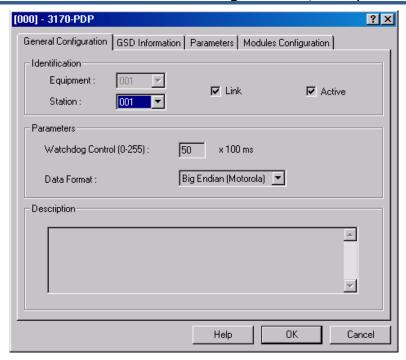

e. Select DPRAM Base Address D4000, Interrupt Vector IRQ 5, and PC104/ISA PC104\_DPIO.



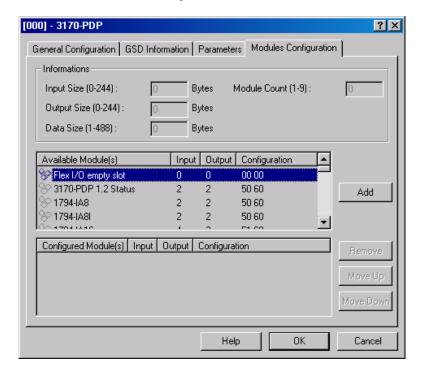
f. Select OK.



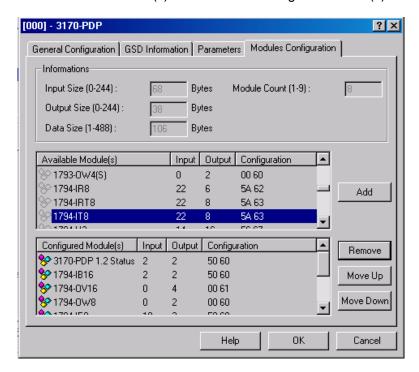

- g. Under Protocol, select Properties.
- h. Select 12 Mbit in Baud Rate.



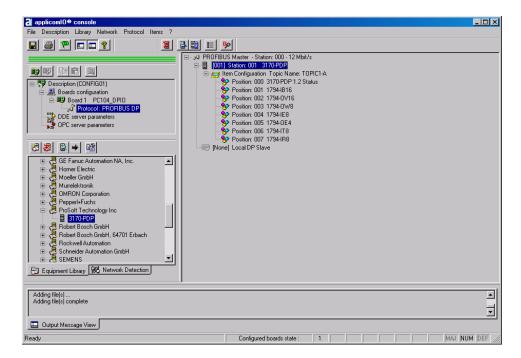

i. Select OK.


Before a slave head (Network Interface Module) can be selected, the associated GSD file must be in the equipment library. If the GSD file doesn't already exist in the library, it must be downloaded and saved within the Applicom setup files (C:\Program Files\ApplicomIO\2.1\Equipment Library\Profibus\_gsd). In this example, the ProSoft 3170-PDP GSD file (psft0882.gsd) is imported using library, Add.

j. Select the 3170-PDP head under ProSoft Technology Inc. and drag to the window on the right. This will open a 3170-PDP setup window.



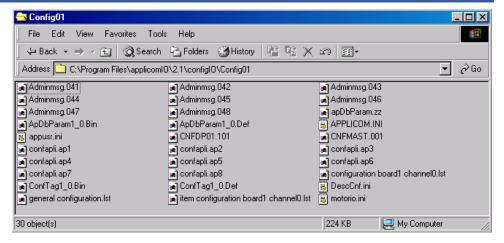




- k. In this example the Station number is selected as 001. (This is what is referred to as the node number.)
- I. Select the Modules Configuration Tab.



m. Build the module configuration by dragging the desired modules from the Available Module(s) window to the Configured Module(s) window.




n. Select OK when done.



o. This completes the Applicom setup.



Once created, the Profibus configuration files can be found on the programming station under c:\program files\applicomIO\2.1\configIO\config\_name.



 Save the configuration and copy all files from the ConfigIO directory to the AtlasPC control using AppManager. (C:/Woodward/Applications directory)

#### **Profibus Software Configuration (GAP)**

After creating the Profibus I/O configuration, the GAP application must be programmed to match. The steps necessary to program the Profibus module in GAP are as follows:

 Select FB\_MODULE for slot 6 in the GAP application. All FieldBus modules use the same Parent Block.



b. Select a FB\_EQUIP Block for every node in the Network and list it in the FB\_MODULE Parent Block. Every FB\_EQUIP block must have its EQUIP\_NO set to the Station number of its respective node.

For examples of a complete GAP setups for Profibus, see the Distributed I/O Examples later in this chapter.

- c. Once completed, the GAP application must be compiled and downloaded to the AtlasPC control using AppManager.
- d. Once the GAP application is started on the AtlasPC control's PC, the Profibus module will automatically initialize and start the Profibus Network. All nodes will be updated from the Applicom module in a circular queue fashion, once every scan rate. The GAP application will update its values once every rate group (defined in FB\_MODULE).



The timing of the Applicom scan rate will depend on the number of groups (heads) and the number of nodes (I/O modules) in the network and will be independent of the rate group structure.

# Chapter 2. PC104 DeviceNet Interface

## Introduction

DeviceNet and CanOpen are protocols that uses CAN (Controller Area Network). This chapter describes the DeviceNet protocol only and has been divided into two sections, Hardware for End Users, and Software for Application Developers. The hardware section is aimed at customers that are applying the Atlas in a permanent installation. The software section is for customers that are developing software for the AtlasPC™ control.

# **DeviceNet Software and Hardware Requirements**

- Atlas with DeviceNet Module
- DeviceNet Master Configuration Tool
- DeviceNet Diagnostic Utilities
- DeviceNet slave device EDS file(s)
- GAP Programming Tool 3.03 or later
- DeviceNet Cables and Connectors
- Slave Interface and Modules
- Device Memory Maps and Scaling (Manuals)
- Woodward Interface Tools

# **Hardware for End Users**

## **DeviceNet Module**

The DeviceNet hardware module used on the AtlasPC control system is a PC/104 form factor ApplicomIO PC104-DVNIO board, equipped with one DeviceNet port capable of handling DeviceNet protocol in both Master/Scanner and Slave modes up to 500 Kbps. This module operates on the PC104 bus and has a PC104 pass-through connector to allow use with other PC104 modules depending on the Atlas configuration.

# **Electrical and Technical Specifications**

Processor: AMD SC520–100 MHz
Memory: 8 Mbytes dynamic RAM
Flash Memory: 512 Kbytes flash memory

Power: 5 W (max. 0.8A)

## **Interface Cables and Connectors**

Most users will purchase finished cables, but the following information is provided for users who need to build custom cables.

The ODVA standard for DeviceNet defines two variations of the bus cable that are compatible with the Phoenix COMBICON connector on the AtlasPC control—Thick and Thin types. The Thick cable is preferred and recommended for all uses. Most DeviceNet cable is not rated for temperatures above 80 °C, so be careful during installation to avoid hot routing areas. Always use the appropriate CAN cable for DeviceNet wiring. Alternate cables will very likely inhibit reliable communication.

- **Thick**—recommended for high transmission speeds and long network distance in comparison to Thin cable.
- **Thin**—should only be used at low baud rates and low requirements on network length. Thin cable should never be used on an engine in a vibration environment.

| Impedance:           | 120Ω ±10% at 1MHz                                                             |
|----------------------|-------------------------------------------------------------------------------|
| Cable capacitance:   | 12 pF/ft at 1kHz                                                              |
| Propagation delay    | 1.36 ns/ft (maximum)                                                          |
| Data Pair:           | 19 strands, 1.0 mm² corresponds to 18 AWG, individually tinned, 3 twists/foot |
| Power Pair:          | 19 strands, 1.5 mm² corresponds to 15 AWG, individually tinned, 3 twists/foot |
| Drain / Shield Wire: | 19 strands Tinned Copper shielding braid or shielding braid and foil          |
| Cable type:          | twisted pair cable. 2x2 lines                                                 |
| Bend Radius:         | 20 x diameter during installation or 7 x diameter fixed position              |
| Signal attenuation:  | 0.13 dB/100 ft @ 125 kHz (maximum)                                            |
|                      | 0.25 dB/100 ft @ 500 kHz (maximum)                                            |
|                      | 0.40 dB/100 ft @ 1000 kHz (maximum)                                           |

Table 2-1. Thick Cable Requirements

#### **Recommended Bulk Cable**

Cable manufacturer Belden is widely available in North America, and Lapp Cable products (Germany) is available in Europe, so these manufacturers are listed in the table below. Neither manufacturer has any exclusive rights to CAN cable, and other suitable alternatives are available from other manufacturers. All three cables below are rated as suitable for DeviceNet trunk cabling and may also be used for drop cabling. Alternative cables may not use the same color coding on the individual conductors.

| Manufacturer | part number                        | Website           |
|--------------|------------------------------------|-------------------|
| Belden       | 3082A DeviceNet Thick Cable–Grey   | www.belden.com    |
| Belden       | 3083A DeviceNet Thick Cable–Yellow | www.belden.com    |
| Lapp Cable   | 2710-250 Unitronic DeviceNet Thick | www.lappcable.com |

The cable specification below is provided for convenience and is typical for the DeviceNet industry.

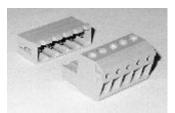
| Belden 3082A DeviceNet<br>Cable |                                                                            |
|---------------------------------|----------------------------------------------------------------------------|
| Weight:                         | 108 lbs/1,000 ft                                                           |
| Ratings:                        | UL PLTC, CMG, AWM, C(UL) AWM I/II A. Flame<br>Resistance: UL 1581, CSA FT4 |
| Conductor:                      | #15/18 AWG Stranded (19x28)/(19x30)                                        |
| Insulation:                     | PVC/Nylon/Foam PE–Polyvinyl                                                |
|                                 | Chloride/Nylon/Foam Polyethylene                                           |
| Nom. O.D.:                      | 0.46" (11.7 mm)                                                            |
| Shield:                         | Individual Aluminum Foil-Polyester Tape/Braid                              |
| Jacket:                         | Lt Gray, PVC                                                               |
| Impedance:                      | 120 Ω                                                                      |
| Velocity Of Prop. :             | 75% (nom.)                                                                 |
| Mutual Capacitance:             | 12.0pF/ft (nom.) (~39 pF/m)                                                |
| Attenuation:                    | .13 DB/100' @ 125 KHZ                                                      |
|                                 | .25 DB/100' @ 500 KHZ                                                      |
|                                 | .36 DB/100' @ 1 MHZ                                                        |
| Standard Lengths:               | 500, 1000, and 2000 ft                                                     |

Table 2-2. Belden DeviceNet cable

## **Cable Connectors**

The typical DeviceNet cable connector is a 5-pin open-style connector. The following products are provided for reference and are compatible with the AtlasPC interface connector.

| Manufacturer    | P/N                          | Website            |
|-----------------|------------------------------|--------------------|
| Phoenix Contact | COMBICON MSTB 2.5/5-STF-5.08 | www.phoenixcon.com |


## **Connector Specifications**

General characteristics of connectors used for DeviceNet data cabling:

| Plating:    | 762 nm (30 micro inch) gold minimum over 1270 nm (50 micro inch) nickel minimum or 127 nm (5 micro inch) gold minimum over 508 nm (20 micro inch) palladium-nickel minimum over 1270 nm (50 micro inch) nickel.  All gold must be 24 karat |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resistance: | < 1 mΩ                                                                                                                                                                                                                                     |

If the CAN wiring is routed through a terminal block, the terminal block should have the above characteristics. The drain/shield should be maintained through the terminal block as well.

#### **DeviceNet Connector Pinout**



In the connector photo, the pinout from left to right is shown in the table from top to bottom. Other connectors may be used on some products.

| Position | Color | Name           | Size                         | Notes                     |
|----------|-------|----------------|------------------------------|---------------------------|
| 1        | Black | V(-)           | 1.5 mm <sup>2</sup> (15 AWG) | Used so all devices have  |
|          |       |                |                              | a common reference        |
| 2        | Blue  | CAN-Low        | 1.0 mm <sup>2</sup> (18 AWG) | Data                      |
| 3        | None  | Shield / Drain | 1.0 mm² (18 AWG)             | AC-coupled to the chassis |
|          |       |                |                              | of the AtlasPC control    |
| 4        | White | CAN-High       | 1.0 mm <sup>2</sup> (18 AWG) | Data                      |
| 5        | Red   | V(+)           | 1.5 mm <sup>2</sup> (15 AWG) | 11–25 Vdc input required  |

Always ground the V(–) at only one point in the system. This point should be the same as the DeviceNet power supply ground.

# **Network Wiring**

CAN networks are multi-drop networks arranged with two physical ends and up to 64 nodes connected between the ends. Many limitations work together to define the total end-to-end length of the network. This section will help define those.

# **Network Length**

Length of the CAN cabling is variable depending on many factors. Cable type is one factor that significantly affects maximum length. Woodward recommends only the "thick" cable type which is capable of the maximum length.

CAN allows for a single trunk with drops to each (or multiple) nodes. The number of drops is not limited nor is the number of nodes applied on a single drop. However, the length of wire in each drop is limited. The length of any single drop may be 0 to 6 meters where a zero length drop means the node is attached directly to the trunk. The total length of all drops together (cumulative drop length) is limited by the cable type and the baud rate in use.

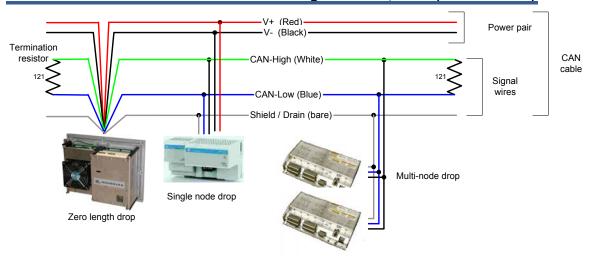



Figure 2-1. Typical CAN Network Example

The example below shows three methods of connecting a CAN device on the network. The example also includes a couple of devices that do not use the power pair in the CAN cable. Most devices require the power pair but some do not. Reference the device literature for details and requirements.

The table below gives the maximum trunk and cumulative drop lengths for each supported baud rate. Using less in one column does NOT allow usage of more in another column. Each column is exclusive and represents an absolute maximum.

| Baud Rate | Trunk Length    | Cumulative Drop | Maximum Drop |
|-----------|-----------------|-----------------|--------------|
| 125 kb    | 500 m (1640 ft) | 156 m (512 ft)  | 6 m (20 ft)  |
| 250 kb    | 250 m (820 ft)  | 78 m (256 ft)   | 6 m (20 ft)  |
| 500 kb    | 100 m (328 ft)  | 39 m (128 ft)   | 6 m (20 ft)  |

# **Terminating Resistors**

A termination resistor must always be present at each end of the network for the devices to communicate properly. CAN requires a terminating resistor to be installed at each end of the trunk—not at the end of a drop. The resistor requirements are:

- 121 Ω
- 1% Metal Film
- 0.25 W

The resistor must be installed between pins 2 and 4 (the CAN-Low and CAN-High pins) of the DeviceNet connector.



#### **IMPORTANT**

Terminating resistors should not be installed at the end of a drop line. They should be installed only at the two ends of the trunk line.

Since termination resistors cannot be placed at the end of a drop line, the AtlasPC control is not provided with built-in network termination resistors.

# **Shielding**

Shielded cable must be used between the AtlasPC control and any other devices. Unshielded cables and improperly shielded cables will very likely lead to communication problems and unreliable control operation.

The shield must always be AC-coupled (connected through a capacitor or RC network) at each connected device and connected directly to earth ground for proper operation. The AtlasPC control has been constructed so that the Shield/Drain connection is AC-coupled to chassis ground internal to the AtlasPC control through a parallel combination of a 0.01  $\mu F$  capacitor and 1 M $\Omega$  resistor as defined by the DeviceNet standard. The installer must provide for connection directly to earth, or the shield must be run to a properly grounded stud at a single point on the network.

# 24 Volt Power Supply

The DeviceNet network is different from many others in that a 24 Vdc power supply is distributed with the network. The AtlasPC system does not provide this supply, and all customers using DeviceNet will have to provide a separate and isolated supply to ensure proper network operation.

The governing authority for DeviceNet (ODVA) has specific requirements for the 24 Vdc network supply. Select a supply that meets these requirements. Certified supplies can be found on the ODVA web site (www.odva.org).

#### **DeviceNet Slave Hardware**

The AtlasPC control system can control DeviceNet slave modules from many different manufacturers. With the exception of Woodward-manufactured devices, Woodward makes no expressed or implied statement of suitability of these devices. It is the user's responsibility to ensure EMC compliance of their system, if necessary, by using distributed modules that are CE compliant. The following DeviceNet slave hardware has been tested with the AtlasPC control to confirm functionality.

1) All Woodward devices designed for DeviceNet





| Part Number | Description                                 |
|-------------|---------------------------------------------|
| 1794-ADM    | I/O Network Interface for DeviceNet (Slave) |
| 1794-IB16   | Discrete Input (Sink)                       |
| 1794-OV16   | Discrete Output (Sink)                      |
| 1794-OW8    | Discrete Output (Relay)                     |
| 1794-IE8/B  | Analog Input (Current)                      |
| 1794-OE4/B  | Analog Output (Current)                     |
| 1794-IT8    | Thermocouple Input                          |
| 1794-CJC2   | Cold Junction                               |
| 1794-IR8    | RTD Input                                   |
| 1794-TB3S   | Terminal Base                               |
| 1794-TB3TS  | Terminal Base                               |

# 3) Automation Direct Terminator I/O



| Part Number | Description             |
|-------------|-------------------------|
| T1K-01AC    | Power Supply            |
| T1K-01DC    | Power Supply            |
| T1K-DEVNETS | DeviceNet Interface     |
| T1K-08ND3   | Discrete Input (Sink)   |
| T1K-16ND3   | Discrete Input (Sink)   |
| T1K-16TD1   | Discrete Output         |
| T1K-08TRS   | Discrete Output (Relay) |
| T1F-16AD-1  | Analog Input (Current)  |
| T1F-16DA-1  | Analog Output (Current) |
| T1F-14THM   | Thermocouple Input      |
| T1K-08B-1   | Terminal Base           |
| T1K-16B-1   | Terminal Base           |
|             |                         |

# **Software for Application Developers**



It is possible to disrupt an existing DeviceNet network by attaching an improperly configured device. To prevent problems on your existing DeviceNet network, read this chapter before connecting the AtlasPC DeviceNet port to a network.

# **IMPORTANT**

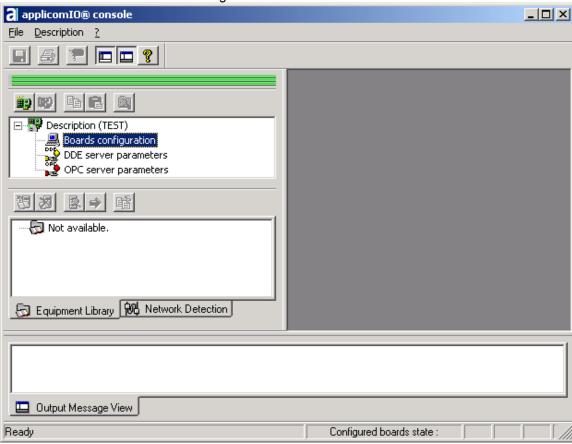
Many end users will be purchasing pre-programmed AtlasPC units and will not need the information in this section. The information below is aimed at programmers using the GAP programming tool provided by Woodward. The information provided here covers the basics. For more detail, refer to Woodward software manual 26103, Woodward NT Real Time Operating System Service and Interface Tools or software manual 26199, Woodward VxWorks Real Time Operating System.

Programmers will need the following:

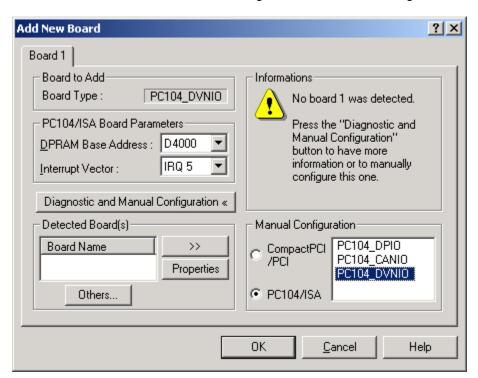
- ApplicomIO configuration software CD-ROM (supplied with the AtlasPC control)
- EDS file(s) for slave module(s)
- Device memory maps and scaling (manuals)
- GAP™ Programming Tool 3.03 or later to create the application (This can be downloaded from our website: www.woodward.com/ic/software)
- For more information on these and additional software tools mentioned in this chapter, see Woodward software manual 26103 (NT RTOS) or 26199 (VxWorks RTOS).

The AtlasPC control is configured to communicate with a DeviceNet network by performing the following steps:

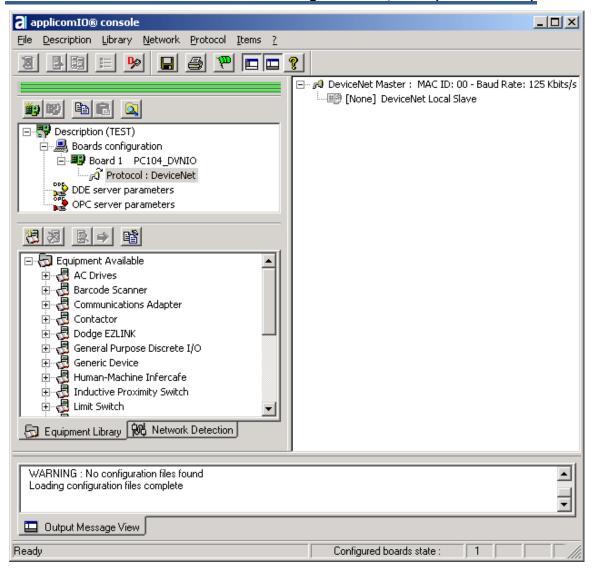
- 1. Verify that the Atlas contains a DeviceNet module.
- 2. Determine slave and I/O modules to be used.
- 3. Determine order of I/O modules.
- Obtain EDS file(s).
- 5. Create a DeviceNet Configuration using the DeviceNet Configuration Tool.
- 6. Review the DeviceNet slave manuals and understand the hardware addressing.
- 7. Create GAP application which reads and writes to the DeviceNet I/O.
- 8. Transfer Configuration files and GAP application to AtlasPC control.
- 9. Start GAP application.


## **DeviceNet Software Configuration (ApplicomIO Console)**

The DeviceNet network is configured using the DeviceNet Configuration Tool provided on CD-ROM with the AtlasPC control (ApplicomIO 2.1 Console). This tool supports defining the AtlasPC DeviceNet board as a master or slave device. For master operation, the slave devices are defined and configured by importing their EDS files and assigning network addresses. Once the DeviceNet I/O configuration is completed, it must be downloaded to the AtlasPC control and stored with the GAP application.

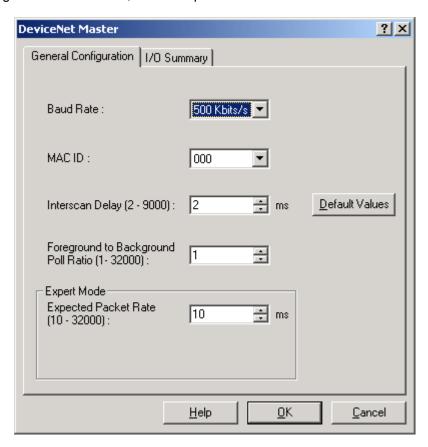

The DeviceNet master interface card in the AtlasPC control is manufactured by Applicom International. All Applicom cards used in AtlasPC systems share IRQ 5. Even though they can use other IRQ settings, it is necessary that they share IRQ 5 for proper operation and to prevent conflict with other devices in the AtlasPC system. All IRQs are factory set and must not be changed by the end user.

All Applicom cards used in AtlasPC systems must use the same Base Address of D4000 when configured in the ApplicomIO Console software. The following example will show how to use the Applicom configuration tool.

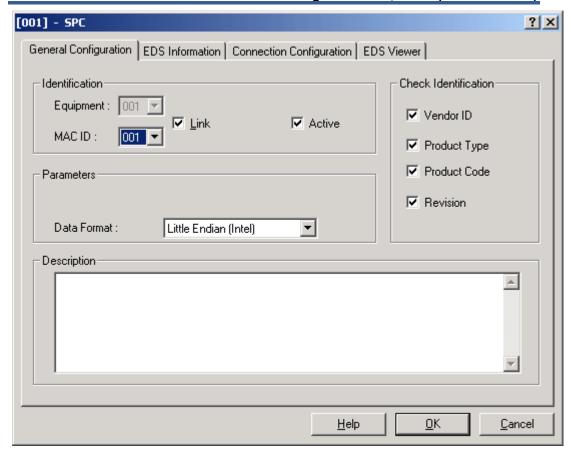

- a. Run ApplicomIO 2.1 Console.
- b. Under File, select Configuration Manager. Select New if a new configuration is desired, or select an existing configuration listed. In this example, the configuration was named Config01. Application will close and require a restart when a new configuration is selected.



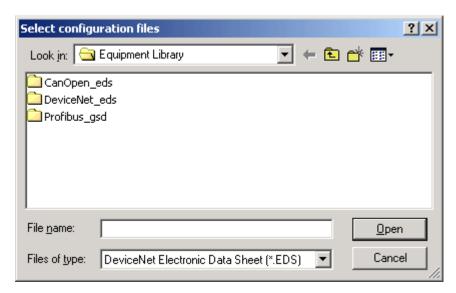
- c. Under Board Configuration, select Add Board.
- d. Under Add New Board, select Diagnostic and Manual Configuration.



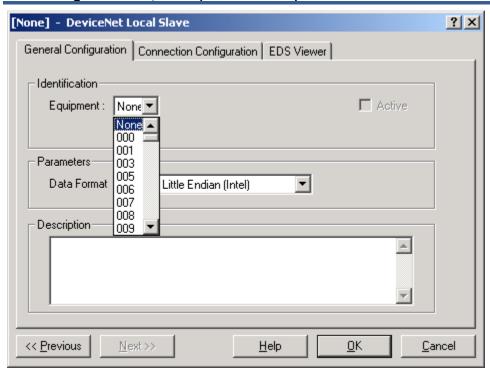

 Select DPRAM Base Address D4000, Interrupt Vector IRQ 5, and PC104/ISA PC104\_DVNIO.



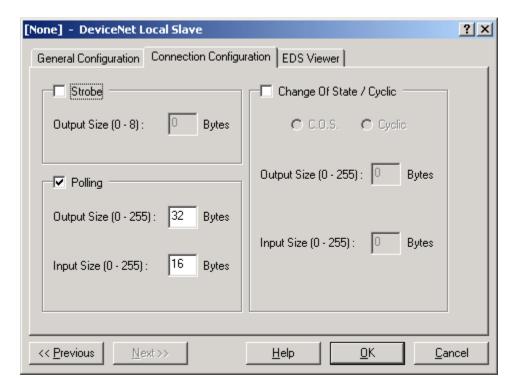

f. Under Files --> Properties, Make sure Expert Mode is Checked.


g. Under Protocols, select Properties.

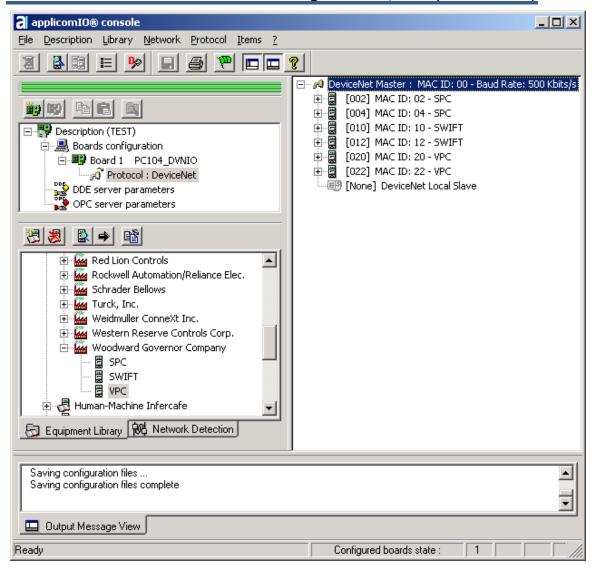



- h. Select the correct Values for the Network. The DeviceNet Net Timeout will be 4 times the expected packet rate, and must be set with care.
- Drag and Drop all nodes in the Network from the Equipment Library to the DeviceNet Master.




- j. Select a unique MACID for each node
- k. Select Little Endian vs Big Endian.
- I. If a node cannot be found in the Library, It can be added using Library→ Add.

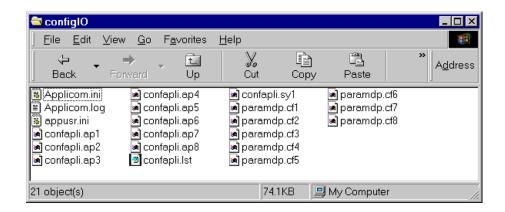



m. Select the EDS file supplied by the Nodes Manufacturer.



 The Atlas can also be configured as a DeviceNet Slave, by selecting DeviceNet Local Slave. First Select a MACID.

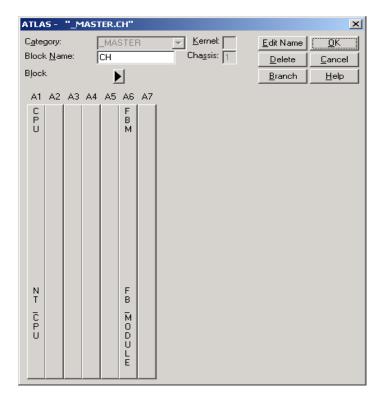



- o. Then enter the relevant number of bytes in the appropriate fields.
- p. Once all nodes have been entered, select File → Save.

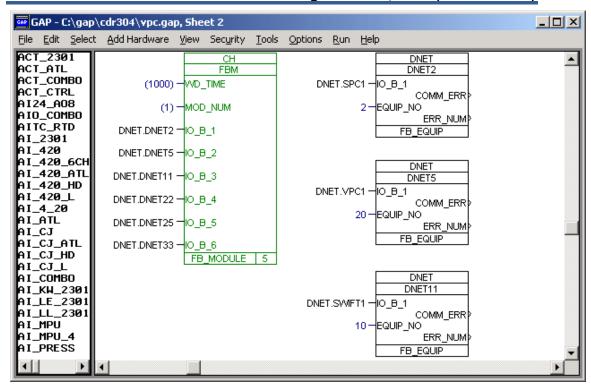


q. Copy all files from the ConfigIO directory to the AtlasPC control's PC using AppManager.

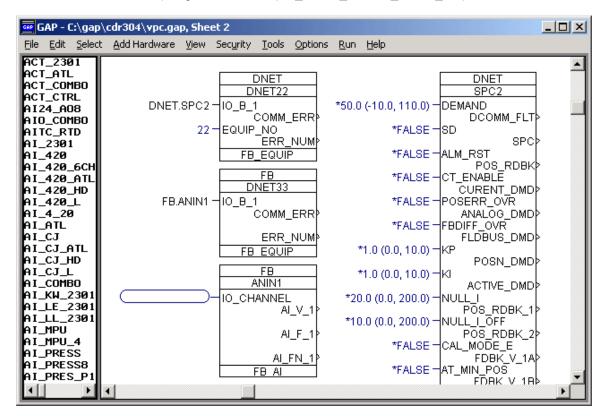
IMPORTANT


Once created, the DeviceNet configuration files can be found on the programming station under c:\program files\applicomIO\2.1\configIO.




## **DeviceNet Software Configuration (GAP)**

After creating the DeviceNet I/O configuration, the GAP application must be programmed to match. The steps necessary to program the DeviceNet module in GAP are as follows:


 Select FB\_MODULE for slot 6 and or 7 in the Atlas Chassis. All FieldBus modules use the same Parent Block.



b. Select a FB\_EQUIP Block for every node in the Network and list it in the FB\_MODULE Parent Block. Every FB\_EQUIP block must have it's EQUIP NO set to the MACID of its respective node.



c. Every Node is then defined using specific GAP blocks (SPC, VPC, SWIFT) or generic blocks (FB\_AI, FB\_AO, FB\_BI, FB\_BO).



For examples of a complete GAP setups for DeviceNet, see the Distributed I/O Examples later in this chapter.

- d. Once completed, the GAP application must be compiled and downloaded to the AtlasPC control using AppManager.
- e. Once the GAP application is started on the AtlasPC control's PC, the DeviceNet module will automatically initialize and start the DeviceNet Network. All nodes will be updated from the Applicom module in a circular queue fashion, once every scan rate. The GAP application will update its values once every rate group (defined in FB\_MODULE).



The timing of the Applicom scan rate will depend on the number of groups (heads) and the number of nodes (I/O modules) in the network and will be independent of the rate group structure.

# Chapter 3. PC104 Ethernet Interface

## Introduction

This chapter has been divided into two sections, Hardware for End Users, and Software for Application Developers. The hardware section is aimed at customers that are applying the Atlas in a permanent installation. The software section is for customers that are developing software for the AtlasPC™ control.

The AtlasPC control has one Ethernet port on the CPU and one optional PC104 Ethernet board. If the second PC104 Ethernet board is installed, it can be used for either Modbus® \* communication with an HMI, distributed I/O, or redundant control. Redundant Ethernet is used with the GE EGD package for sequencing controls. Either Ethernet port may be used for distributed I/O, but it is recommended that only the PC104 Ethernet port be use for this purpose. The CPU Ethernet port is the only Ethernet port accessible with AppManager. Each port uses a different IP address that can be set by AppManager. This subchapter deals primarily with distributed I/O connections. For more information on HMI communications and redundant controls, consult appropriate vendor manuals.

\*—Modbus is a trademark of Schneider Automation Inc.

# **Ethernet Software and Hardware Requirements**

- Atlas with PC104 Ethernet Module
- GAP Programming Tool 3.03 or later
- Ethernet Cables and Connectors
- Slave Interface and Modules
- Device Memory Maps and Scaling (Manuals)
- Woodward Interface Tools

#### Hardware for End Users

#### **Ethernet Module**

To use with distributed I/O, the AtlasPC control may be configured as a Modbus master using Ethernet UDP or Ethernet TCP/IP. Grayhill distributed I/O, Modicon distributed I/O, and Bentley-Nevada vibration systems use Ethernet TCP/IP protocol and are compatible with the AtlasPC control. Currently, neither Allen-Bradley nor Automation Direct distributed I/O are able to interface with the AtlasPC control over Ethernet because they use an incompatible protocol.

The PC104 Ethernet port is an auto-switching 10/100 Megabit per second (Mbps) connection accessed through a second RJ45 connector labeled Ethernet #2. It complies with IEEE/ANSI 802.3 and Blue Book standards. If 100 Megabit operation is desired, all devices on the network must be 100 Base-TX capable.

The PC104 Ethernet module used in the AtlasPC control system is a PC/104 form factor module supporting TCP/IP and UDP protocols. This module operates on the PCI bus but it has both PCI and PC104 pass through connectors to allow use with other PCI and PC104 modules, depending on the Atlas configuration.

# **Electrical and Technical Specifications**

Controller: AMD 79C973

Memory: 12 Mbytes dynamic RAM Bus Interface: 32 bit PC/104 Plus bus

Voltage: 5.0 Vdc only Power: 1.5 W Typical

#### **Interface Cables and Connectors**

Most users will purchase finished cables, but the following information is provided for users that need to build custom cables.

The AtlasPC control requires double-shielded cable (SSTP) for Ethernet in order to be appropriately immune to EMC in industrial environments. Below are the general requirements for Category 5 Ethernet cable.

| Impedance:            | 100.0 Ω ±15%                                   |
|-----------------------|------------------------------------------------|
| Cable capacitance:    | 49.2 pF/m (15.0 pF/ft) at 1 kHz                |
| Propagation Velocity: | 67.0%                                          |
| Data Pairs:           | 0.2 mm <sup>2</sup> (24 AWG) solid bare copper |
| Cable type:           | Category 5 compatible with RJ45                |
| Bend Radius:          | 25 mm (1.0 inch)                               |
| Signal attenuation:   | 2.0 dB/100 m at 1.0 MHz                        |

Table 3-1. Category 5 Cable Requirements

#### **Recommended Bulk Cable**

Since cable manufacturer Belden is widely available, their cable types are listed as a reference. Belden has no exclusive rights to Ethernet cable, and other suitable alternatives are available from other manufacturers. Both cables below are rated as suitable for Ethernet category 5 cabling and compatible with RJ45 connectors.

| Manufacturer | P/N                        | Website        |
|--------------|----------------------------|----------------|
| Belden       | 1624P Ethernet DataTwist 5 | www.belden.com |
| Belden       | 1624R Ethernet DataTwist 5 | www.belden.com |

The cable specification below is provided for convenience and is typical for the Ethernet industry.

| Belden 1624P Ethernet | _                                          |
|-----------------------|--------------------------------------------|
| Cable                 |                                            |
|                       |                                            |
|                       |                                            |
| Weight:               | 34 lbs/1,000 ft                            |
| Ratings:              | UL/NEC TYPE CMP, CEC C(UL) CMP, TIA/EIA    |
|                       | 568A CAT 5, UL VERIFIED TO CAT 5, NEMA WC- |
|                       | 63.1 CAT 5                                 |
| Conductor:            | #24 AWG Solid                              |
| Insulation:           | FEP–Fluorinated Ethylene Propylene         |
| Nom. O.D.:            | 0.24" (6 mm)                               |
| Shield:               | Aluminum Foil-Polyester Tape               |
| Jacket:               | FA-FLAMARREST(TM) PVC                      |
| Impedance:            | 100 Ω                                      |
| Velocity Of Prop. :   | 67% (nom.)                                 |
| Mutual Capacitance:   | 15.0pF/ft (nom.) (~49 pF/m)                |
| Attenuation:          | 1.8 DB/100 Mtrs @ .772 MHz                 |
|                       | 2.0 DB/100 Mtrs @ 1.0 MHz                  |
|                       | 4.1 DB/100 Mtrs @ 4.0 MHz                  |
|                       | 5.8 DB/100 Mtrs @ 8.0 MHz                  |
|                       | 6.5 DB/100 Mtrs @ 10.0 MHz                 |
|                       | 8.2 DB/100 Mtrs @ 16.0 MHz                 |
|                       | 9.3 DB/100 Mtrs @ 20.0 MHz                 |
|                       | 10.4 DB/100 Mtrs @ 25.0 MHz                |
|                       | 11.7 DB/100 Mtrs @ 31.25 MHz               |
|                       | 17.0 DB/100 Mtrs @ 62.5 MHz                |
|                       | 22.0 DB/100 Mtrs @ 100 MHz                 |
| Standard Lengths:     | 1000 ft                                    |

Table 3-2. Belden Ethernet cable

# **Cable Connectors**

The typical Ethernet cable connector is an RJ45 style connector. The following products are provided for reference and are compatible with the AtlasPC RJ45 interface connector.

| Manufacturer           | P/N      | Website     |
|------------------------|----------|-------------|
| Tyco Electronics (Amp) | 5-569550 | www.amp.com |

#### **Ethernet Connector Pinout**

| Connector | Signal Mnemonic              |
|-----------|------------------------------|
| RJ45F     | Shielded RJ45 female         |
| 1 8       | receptacle                   |
|           |                              |
| 1         | TX+                          |
| 2         | TX-                          |
| 3         | RX+                          |
| 4         |                              |
| 5         |                              |
| 6         | RX-                          |
| 7         |                              |
| 8         |                              |
| Shield    | AC Coupled to Chassis<br>GND |

Table 3-3, RJ45 10/100 Base-TX Pinout



Use shielded Ethernet cable only! Use of non-shielded cable may result in permanent system damage.

# **Network Wiring**

There are two possible connection setups for the Ethernet networks.

The first is a network consisting of an Atlas and one other device with no routers, switches, or other external devices. In this configuration the cable between Atlas and the other device must be a crossover cable. A crossover cable has the following pin connections:

| Connector 1 Pin # | Connector 2 pin # |
|-------------------|-------------------|
| 1                 | 3                 |
| 2                 | 6                 |
| 3                 | 1                 |
| 4                 | 4                 |
| 5                 | 5                 |
| 6                 | 2                 |
| 7                 | 7                 |
| 8                 | 8                 |



Crossover cables can often be spotted visually by comparing the connectors side by side. If a colored wire is found on one pin of the first connector, but on a different pin of the second connector, the cable is probably a crossover cable.

In the second type of network there will be at least two devices plus a router, hub, server, or switch. This type of network will use straight-through cables, meaning that pin 1 on one connector is connected to pin 1 on the other.

The 100BASE-TX media system is designed to allow segments of up to 100 meters in length when using data grade twisted-pair wire that has a characteristic impedance of 100 ohms and meets the EIA/TIA Category Five wire specifications. Segments of 100BASE-TX are limited to a maximum of 100 meters to ensure that the round-trip timing specifications are met. This is in contrast with the 10BASE-T media system, where the maximum segment length for the 10-Mbps link is mostly limited by signal strength. The EIA/TIA cabling standard recommends a segment length of 90 meters between the wire termination equipment in the wiring closet, and the wall plate in the office. This provides 10 meters of cable allowance to accommodate patch cables at each end of the link, signal losses in intermediate wire terminations on the link, etc. Woodward recommends halving these maximum distances for use in industrial environments.

### **Shielding**

Double shielded Ethernet cable must be used between the AtlasPC control and any other devices. Standard Ethernet cables used in office environments are NOT shielded. Unshielded cables will very likely lead to communication problems and unreliable control operation.

The shield must always be AC-coupled at one end and connected directly to earth on the opposite end for proper operation. The Atlas has been constructed so that the Ethernet cable shield is AC-coupled to earth at the Atlas. It is assumed that most other devices on the network will provide for direct grounding of the shield at that device. However, if an external device provides AC-coupling of its shield, Woodward can supply an Ethernet Interface FTM (Field Termination Module) to allow earth grounding at the Atlas end of the cable. The FTM (part number 5453-754) has two female RJ45 connectors. One is AC-coupled to its chassis, and the other is direct coupled to its chassis.

#### Slave Hardware

Woodward is always testing new Ethernet networked Distributed I/O modules. When an Ethernet interface module has been proven to meet Woodward's requirements, it will be documented in this section.

# **Software for Application Developers**



It is possible to disrupt an existing Ethernet network by attaching an improperly configured device. To prevent problems on your existing Ethernet network, read this chapter before connecting the AtlasPC Ethernet ports to a network.

# **IMPORTANT**

Many end users will be purchasing pre-programmed AtlasPC units and will not need the information in this section. The information below is aimed at programmers using the GAP programming tool provided by Woodward. The information provided here covers the basics. For more detail, refer to Woodward software manual 26103, Woodward NT Real Time Operating System Service and Interface Tools or software manual 26199, Woodward VxWorks Real Time Operating System.

Programmers will need the following:

- GAP™ Programming Tool 3.03 or later to create the application. (This can be downloaded from our website: www.woodward.com/ic/software)
- For more information on these and additional software tools mentioned in this chapter, see Woodward software manual 26103 (NT RTOS) or 26199 (VxWorks RTOS).

#### **IP Address Setup**

The AtlasPC Ethernet connections are designed to work with either DHCP servers or with fixed IP addresses.

# **IMPORTANT**

DHCP systems work by automatically detecting and assigning an IP address for some fixed amount of time, often known as a "lease". If a unit is given a lease and then sits offline for a period of time longer than the lease, then it becomes necessary to put the unit back on to a DHCP network in order to reconnect to the unit. For this reason, all AtlasPC systems ship with fixed addresses to prevent problems for customers who do not use DHCP systems.

- Refer to the software tools manual (26103 or 26199) for factory default IP address settings and configuration details.
- If two or more AtlasPC controls are to be used on the same network, the IP addresses must be changed to *unique* addresses (valid for your particular network) or to DHCP mode, whichever is appropriate in order to avoid address conflicts.
- AppManager can be used to view the AtlasPC Ethernet ports' existing IP addresses. To find the 2nd Ethernet port's IP address, connect to the Ethernet port, highlight the unit's name in AppManager, and press the "Control Info" button. Under "Footprint Description"→ "Network Adaptors" there should be two IP addresses. One is the AtlasPC Ethernet IP; the other is the AtlasPC PC/104 Ethernet IP.

 The PC/104 Ethernet connection must be configured with a different network domain identifier from the primary Ethernet connection resident on the CPU board. If this is not done, the operating system will only require one port to operate even though both may respond to ping requests.



Whether you use DHCP or fixed address networks, you must configure all AtlasPC units, and to ensure proper operation of both ports, they must be on different domains. Refer to the Woodward software manual supplied with your control for further details.

# **Ethernet Software Configuration – (GAP)**

- Program the Ethernet ports in the GAP Application. There can be multiple UDP ports assigned by using several UDP\_P GAP blocks. Each UDP\_P output can connected to a PORT\_x input in a MODBUS\_S or MODBUS\_M block.
- Load and execute the GAP application. GAP will initialize the Ethernet ports with the Configuration data and acquire the I/O information.

#### TCP/IP

- Use the FBUS\_M block in the GAP application. No port is needed. Multiple FBUS M blocks can be used.
- Load and execute the GAP application.

# Chapter 4. Serial (Modbus) Interface

# Introduction

This chapter has been divided into two sections, Hardware for End Users, and Software for Application Developers. The hardware section is aimed at customers that are applying the Atlas in a permanent installation. The software section is for customers that are developing software for the AtlasPC™ control.

The AtlasPC control uses AEG-Modicon Inc.'s Modbus protocol. The Modbus protocol determines how the master and slaves establish and break off contact, how the sender and receiver are identified, how messages are exchanged in an orderly manner, and how errors are detected. The protocol also controls the query and response cycle which takes place between the master and slave devices.

# **Serial Software and Hardware Requirements**

- GAP Programming Tool (all versions)
- Serial cables and connectors
- Slave Interface and Modules
- Device Memory Maps and Scaling (Manuals)
- Woodward Interface Tools

#### Hardware for End Users

#### Serial (Modbus) Port Protocols

There are up to five serial communication ports on the Atlas platform that may be used for the Modbus interface. Modbus can use RS-232, RS-422, and RS-485 configurations. The one or two communication ports on the CPU board are fixed as RS-232, and are non-isolated. Shielded cables and Serial Port Isolator/ Converter(s) are required when using these ports. The first two ports on the SmartCore board may be configured for RS-232, RS-422, or RS-485, and the last port is configurable for RS-232 only.

**RS232**—An ANSI (American National Standards Institute) standard definition of electrical, functional, and mechanical connections for communications between DTE (Data Terminal Equipment) and DCE (Data Communications Equipment) such as connection of a computer to a modem. It has gained wide usage in short distance applications (15 m/50 ft). In practice the standard is largely ignored beyond the most rudimentary implementation of electrical signals ( $\pm 3$  to  $\pm 15$  volts). Woodward's implementation will support speeds up to 115K baud in AtlasPC systems. The actual specification allows 19.2K baud at up to 15 m (50 ft).

**RS422**—Also an ANSI standard definition of electrical connections for communications between devices. Because it uses balanced drivers, it can communicate over long distances (1200 m/4000 ft) at high baud rates (115K). Woodward's implementation of RS-422 is actually a 4-wire RS-485 communications network. Since Woodward convention has been to call this RS-422, this manual will continue to do so. However, it may be important to understand that the actual port is RS-485. The port supports up to 32 devices as a full duplex, multi-drop communications network. This allows more than one device to be connected to the common bus with a single master requesting data. It requires two twisted pairs and ground to operate.

**RS485**—Also an ANSI standard definition of electrical connections for communications between devices. Because it uses balanced drivers, it can communicate over long distances (1200 m/4000 ft) at high baud rates (115K). This protocol is implemented identically to "RS-422" with the exception that only one twisted pair is required. Both transmitted and received data use the same pair of wires. A ground wire is still required since the output is isolated. The port supports up to 32 devices as a half duplex, multi-drop communications network. This allows more than one device to be connected to the common bus with a single master requesting data. It requires one twisted pair and ground to operate.

#### **Interface Cables and Connectors**

When choosing a cable for RS-485, it is necessary to examine the required distance of the cable and the data rate of the system. Beyond the obvious traits such as number of conductors and wire gauge, cable specifications include a handful of less intuitive terms.

Characteristic Impedance (ohms)—A value based on the inherent conductance, resistance, capacitance, and inductance of a cable that represents the impedance of an infinitely long cable. When the cable is cut to any length and terminated with this Characteristic Impedance, measurements of the cable will be identical to values obtained from the infinite length cable. Therefore, termination of the cable with this impedance gives the cable the appearance of being infinite length, allowing no reflections of the transmitted signal. When termination is required in a system, the termination impedance value should match the Characteristic Impedance of the cable.

**Shunt Capacitance (pF/ft)**—The amount of equivalent capacitive load of the cable, typically listed in a per foot basis (1 pF/ft = 3.28 pF/m). One of the factors limiting total cable length is the capacitive load. Systems with long lengths benefit from using low capacitance cable.

**Propagation velocity (% of c)**—The speed at which an electrical signal travels in the cable. The value given typically must be multiplied by the speed of light (c,  $3x10^8$  m/s) to obtain units of meters per second. For example, a cable that lists a propagation velocity of 67% gives a velocity of 0.67 x  $3x10^8$  =  $2.01x10^8$  m/s. The higher the percentage, the smaller the signal delay.

General recommendations for serial cable are listed in the following table.

| Impedance:            | 100 Ω ±20%                                     |
|-----------------------|------------------------------------------------|
| Cable capacitance:    | 52.5 pF/m (15.0 pF/ft) at 1 kHz                |
| Propagation Velocity: | 67.0%                                          |
| Data Pairs;           | 0.2 mm <sup>2</sup> (24 AWG) solid bare copper |
| Signal attenuation:   | 6.0 dB maximum                                 |

#### **Recommended Bulk Cable**

For simplicity, Woodward will recommend cables consistent with long cable lengths and high baud rates. Longer cable lengths may be possible at lower baud rates with the best cables but are not supported by the ANSI standards for RS-485. The same cables may be used for RS-232 applications, but length will be limited to 15 m (50 ft).

Ethernet Category 5 cable is a very good cable selection for RS-485 networks. It will support cables lengths to 1200 m (4000 ft) at baud rates up to 115,200. Since Ethernet cable is easy to find and is inexpensive, it will often be the cable of choice. Always use shielded cable.

Installations with high electrical interference (noise) and/or long cable lengths together with high baud rates may benefit from larger gauge cable.

#### **Network Construction**

While there are a number of different ways to physically connect devices on a network, Woodward recommends that multi-drop networks be constructed using a "daisy chain" configuration or a "backbone with stubs" for best performance. In a daisy chain, wires are run from device one to device two to device three, etc. In a backbone with stubs, a main trunk line is run between the two devices that are physically farthest apart, and then stub lines are run from the intermediate devices to the trunk line. Stubs should be kept as short as possible. See Volume I, Figure 11-2 for a graphical representation.

#### **Termination**

To achieve best performance with RS-485 serial communication networks, it is necessary to terminate the network to prevent interference caused by signal reflections. RS-232 networks are short enough that termination is not required. For ease of setup, Woodward has provided built-in network termination resistors on the SmartCore board for the RS-485 serial ports. To activate the termination resistors, an external jumper must be placed at the connector. The resistor network used is a special design intended to provide maximum noise immunity. The same design should be used at the opposite end of the network. This termination network is necessary due to limitations of the Modbus protocol. (See the information in the SmartCore chapters of Volume I.)

Termination resistors must be installed only on the two units that are at the physical ends of the network. Terminating other midpoint units can overload the network and put it into a cyclic thermal shutdown mode. As a rule, no matter how many units are on a network, there should never be more than two terminations installed. For 2-wire networks, a termination network should be used at the two physical ends of the network. For 4-wire networks, Woodward has elected to use a termination network only across the receiver lines at either end of the network. This is feasible due to the baud rate limit of 115K. In either case (2- or 4-wire configurations), a total of two termination networks are used.

# **Shielding**

Shielded cable is required between the AtlasPC control and any other devices. Unshielded cables and improperly shielded cables are likely to cause communication problems and unreliable control operation. The shield must always be ac-coupled (connected through a capacitor) at one end and connected directly to earth on the opposite end for proper operation. The SmartCore board has been constructed so that the serial port Shield connections are directly connected to the Atlas chassis ground (which must be tied directly to earth). Devices connected to the opposite end of the cable must provide for the accoupled shield connection.

Woodward has found that a 0.01  $\mu F$  capacitance is typically adequate for this purpose. A minimum rating of 1000 Vdc on the capacitor is required.

# Connectors Pinouts SmartCore SIO # 1 Connector and Pinout

| Connector | Terminal           | Signal Mnemonic     |
|-----------|--------------------|---------------------|
| PHOENIX   | SmartCore          |                     |
| 000000000 | with               |                     |
|           | Actuator<br>Pinout |                     |
| 1         | 93                 | 232 TXD             |
| 2         | 94                 | 232 RXD             |
| 3         | 95                 | SIG GND             |
| 4         | 96                 | 422/485 (+) RECEIVE |
| 5         | 97                 | TERM RES. +         |
| 6         | 98                 | TERM RES            |
| 7         | 99                 | 422/485 (–) RECEIVE |
| 8         | 100                | 422 (+) TRANSMIT    |
| 9         | 101                | 422 (1) TRANSMIT    |
| 10        | 102                | SHLD (CHASSIS)      |

#### **SmartCore SIO # 2 Connector and Pinout**

| Connector | Terminal  | Signal Mnemonic     |
|-----------|-----------|---------------------|
| PHOENIX   | SmartCore |                     |
| 000000000 | with      |                     |
|           | Actuator  |                     |
|           | Pinout    |                     |
|           |           |                     |
| 1         | 83        | 232 TXD             |
| 2         | 84        | 232 RXD             |
| 3         | 85        | SIG GND             |
| 4         | 86        | 422/485 (+) RECEIVE |
| 5         | 87        | TERM RES. +         |
| 6         | 88        | TERM RES            |
| 7         | 89        | 422/485 (-) RECEIVE |
| 8         | 90        | 422 (+) TRANSMIT    |
| 9         | 91        | 422 (1) TRANSMIT    |
| 10        | 92        | SHLD (CHASSIS)      |

# **SmartCore SIO # 3 Connector and Pinout**

| Connector                    | Signal Mnemonic                |
|------------------------------|--------------------------------|
| DB9F                         | Shielded DB9 female receptacle |
| \$ 1<br>00000<br>0000<br>8 8 |                                |
| 1                            |                                |
| 2                            | RXD                            |
| 3                            | TXD                            |
| 4                            |                                |
| 5                            | GND                            |
| 6                            |                                |
| 7                            |                                |
| 8                            |                                |
| 9                            |                                |
| Shield                       |                                |

## **CPU Comm 1 Connector and Pinout**

| Connector                     | Signal Mnemonic                |
|-------------------------------|--------------------------------|
| DB9F                          | Shielded DB9 female receptacle |
| \$ 1<br>00000<br>0000<br>0000 |                                |
| 1                             | DCD                            |
| 2                             | RXD                            |
| 3                             | TXD                            |
| 4                             | DTR                            |
| 5                             | SIG COM.                       |
| 6                             | DSR                            |
| 7                             | RTS                            |
| 8                             | CTS                            |
| 9                             | RI                             |
| Shield                        | SHLD (CHASSIS)                 |

# **CPU Comm 2 Connector and Pinout**

| Connector                    | Signal Mnemonic                |
|------------------------------|--------------------------------|
| DB9F                         | Shielded DB9 female receptacle |
| \$ 1<br>00000<br>0000<br>8 8 |                                |
| 1                            | DCD                            |
| 2                            | RXD                            |
| 3                            | TXD                            |
| 4                            | DTR                            |
| 5                            | SIG COM.                       |
| 6                            | DSR                            |
| 7                            | RTS                            |
| 8                            | CTS                            |
| 9                            | RI                             |
| Shield                       | SHLD (CHASSIS)                 |

# **Network Wiring**

See Chapters 5 and 6 of Volume I for serial I/O wiring.

# **Network Length**

When choosing a transmission line for RS-232, RS-422, or RS-485, it is necessary to examine the required distance of the cable and the data rate of the system. Losses in a transmission line are a combination of AC losses (skin effect), dc conductor loss, leakage, and AC losses in the dielectric.

Maximum Distances

RS-232 15 m (50 ft) RS-422, RS-485 1219 m (4000 ft)

# Serial (Modbus) Slave Hardware

The AtlasPC control system may control Modbus slave modules from many different manufacturers. With the exception of Woodward-manufactured devices, Woodward makes no expressed or implied statement of suitability of these devices. It is the user's responsibility to ensure EMC compliance of their system, if necessary, by using distributed modules that are CE compliant. The following Serial Modbus slave hardware has been tested with the AtlasPC control to confirm functionality.

1) All Woodward devices designed for Modbus.

2) Allen-Bradley Flex I/O



| Part Number | Description                                                     |
|-------------|-----------------------------------------------------------------|
| 3170-MBS    | I/O Network Interface for Modbus (Slave) (ProSoft Technologies) |
| 1794-IB16   | Discrete Input (Sink)                                           |
| 1794-OV16   | Discrete Output (Sink)                                          |
| 1794-OW8    | Discrete Output (Relay)                                         |
| 1794-IE8/B  | Analog Input (Current)                                          |
| 1794-OE4/B  | Analog Output (Current)                                         |
| 1794-IT8    | Thermocouple Input                                              |
| 1794-CJC2   | Cold Junction                                                   |
| 1794-IR8    | RTD Input                                                       |
| 1794-TB3S   | Terminal Base                                                   |
| 1794-TB3TS  | Terminal Base                                                   |

#### 3) Automation Direct Terminator I/O



# **Software for Application Developers**



T1K-08B-1

T1K-16B-1

Many end users will be purchasing pre-programmed AtlasPC units and will not need the information in this section. The information below is aimed at programmers using the GAP programming tool provided by Woodward. The information provided here covers the basics. For more detail, refer to Woodward software manual 26103, Woodward NT Real Time Operating System Service and Interface Tools or software manual 26199, Woodward VxWorks Real Time Operating System.

Programmers will need the following:

Device memory maps and scaling (Manuals)

**Terminal Base** 

**Terminal Base** 

- GAP™ Programming Tool (all versions) to create the application. (This can be downloaded from our website: www.woodward.com/ic/software)
- For more information on these and additional software tools mentioned in this chapter, see Woodward software manual 26103 (NT RTOS) or 26199 (VxWorks RTOS).

The AtlasPC control is configured to communicate with a Serial network by performing the following steps:

- 1. Determine slave and I/O modules to be used.
- 2. Determine order of I/O modules.
- 3. Review the Serial Modbus slave manuals and understand the hardware addressing.
- 4. Create GAP application which reads and writes to the Serial I/O.
- 5. Transfer GAP application to AtlasPC control.
- 6. Start GAP application.

#### **Serial (Modbus) Software Configuration (Protocol)**

The AtlasPC control supports both the ASCII and RTU versions of the Modbus protocol. RTU is more widely used since it is the more efficient of the two.

- ASCII: hex coding / 7 bits per character (4 transmitted) / any parity / 1 or 2 stop bits
- RTU: 8 bit binary coding/ 8 bits per char (8 transmitted) / any parity / 1 or 2 stop bits

RTU sends data in 8-bit binary characters. ASCII firsts divides each RTU character into two 4-bit parts (high order and low order) and then represents them by their hexadecimal equivalent. The ASCII characters representing the hexadecimal characters are used to construct the message thus using twice as many characters as RTU mode. Additionally, RTU message characters are transmitted in a continuous stream, whereas ASCII can have breaks of up to one second between characters.

The following is a guideline for configuring a serial port interface from the control to a communication device.

|         | Modbus RTU     |
|---------|----------------|
| BAUD    | 10 (38400)     |
| BITS    | 2 (RTU-8 bits) |
| STOP    | 1 (1 stop)     |
| PARITY  | 1 (none)       |
| MODE    | 1 (line)       |
| FLOW    | 1 (off)        |
| ECHO    | 1 (off)        |
| ENDLINE | 3 (crlf)       |
| IGNCR   | 1 (off)        |

#### Serial (Modbus) Software Configuration (GAP)

See the Distributed I/O Examples later in this chapter for specific configuration examples for Allen-Bradley and Automation Direct applications.

After completing the GAP application, it must be compiled and downloaded to the AtlasPC control's PC using AppManager. Once the GAP application is started on the AtlasPC control's PC, the Serial Modbus module will automatically initialize and start the Modbus Network.



The timing of the serial scan rate will depend on the number of groups (heads) and the number of nodes (I/O modules) in the network and will be independent of the rate group structure.

# Chapter 5. PC104 CanOpen Interface



CanOpen is a protocol that uses CAN (Controller Area Network). Currently, Woodward is developing the AtlasPC™ CanOpen interface module, and will document its use in this chapter in the near future.

# Chapter 6. Distributed I/O Examples

#### Introduction

This chapter documents the hardware setup and software configuration for two manufacturers of Distributed I/O modules. Since there are numerous manufacturers and options available by numerous manufacturers, Woodward chose Allen-Bradley Flex I/O as a representative of a high end Distributed I/O system and Automation Direct Terminator I/O hardware as a low cost system representative. There are other good high end and low cost manufactures of Distributed I/O systems and therefore these examples should not be taken as a Woodward endorsement. The I/O configurations for each manufacturer were limited to specific I/O modules and a limited application of the possible options available with these modules.

It is the responsibility of the end user to review the options available from each distributed I/O supplier and derive the necessary software configurations needed to support their specific applications. Woodward Governor Company makes no expressed or implied statement of suitability for the Allen-Bradley, Automation Direct, or any other supplier of Distributed I/O systems. It is hoped that these specific examples of I/O module configurations can be used as a foundation for building a majority of the AtlasPC control applications where Distributed I/O is needed. Ease in applying the Woodward software interface may differ from vendor to vendor. Due to limited resources, Woodward can only supply limited technical support for those applications using other vendors or part numbers not shown in these examples. If extensive support is required, contact Woodward for setting up an application development contract.

At this writing, both Allen-Bradley and Automation Direct have Profibus, DeviceNet, and Modbus Interface Modules that are compatible with the AtlasPC interfaces. Both Allen-Bradley and Automation Direct have an Ethernet Interface Module, but neither module is presently compatible with the AtlasPC interface.

The following examples will demonstrate a step-by-step process to use in generating a distributed I/O network.

# Implementing a Distributed I/O Network

- Determine the number and type of I/O channels needed.
- 2. Select the desired network protocol (Profibus, DeviceNet, Modbus, etc.).
- Select the best manufacturer of I/O modules that meet the network and I/O requirements.
- 4. Layout the hardware configuration (how the modules will be arranged and wired).
- 5. Create the Applicom configuration files or Modbus addressing configuration.
- 6. Generate an address spreadsheet to track address numbers for Reads and Writes based on the specific module memory maps and/or the GSD or EDS files for Profibus and DeviceNet respectively.
- 7. Review the published documentation on the I/O modules and select the options required.
- 8. Generate the GAP I/O files.
- 9. Wire control and Distributed I/O network.
- 10. Download the GAP and Applicom files into the control.
- 11. Run application and verify functionality.

# Allen-Bradley Flex I/O Example

In this example, a specific set of Allen-Bradley Flex I/O hardware was selected to represent a typical distributed I/O system. Three different network interfaces are shown. In this example, a Profibus, DeviceNet, and Modbus interface head is connected to the I/O module string to demonstrate these three types of setups.

All three network interfaces use the same I/O module configuration and order. The Profibus and Modbus Network interface modules are manufactured by a third party manufacturer (ProSoft Technology, Inc.). Allen-Bradley manufactures the DeviceNet module.

| Quantity | Module                  | Manuf. P/N |
|----------|-------------------------|------------|
| 1 ea     | Discrete Input (Sink)   | 1794-IB16  |
| 1 ea     | Discrete Output (Sink)  | 1794-OV16  |
| 1 ea     | Discrete Output (Relay) | 1794-OW8   |
| 1 ea     | Analog Input (Current)  | 1794-IE8/B |
| 1 ea     | Analog Output (Current) | 1794-OE4/B |
| 1 ea     | Thermocouple Input      | 1794-IT8   |
| 1 ea     | Cold Junction           | 1794-CJC2  |
| 1 ea     | RTD Input               | 1794-IR8   |
| 6 ea     | Terminal Base           | 1794-TB3S  |
| 1 ea     | Terminal Base           | 1794-TB3TS |
| 1 ea     | Profibus Interface      | 3170-PDP   |
| 1 ea     | DeviceNet interface     | 1794-ADM   |
| 1 ea     | Modbus Interface        | 3170-MBS   |

# Allen-Bradley Flex I/O Profibus Configuration

Each Allen-Bradley FLEX I/O module requires a terminal base that snaps onto a DIN rail to the right of the previous I/O module. Each I/O module is then plugged into its own terminal base. Terminal bases make up a modular backplane for 1794 FLEX I/O modules and make up a modular terminal block for I/O connections. Each terminal base provides a backplane connection between the network interface adapter module and I/O modules.

In this example, one 3170-PDP PROFIBUS adapter is interfaced with seven terminal base units with installed FLEX I/O modules, forming a FLEX I/O system. A maximum of eight I/O modules may be connected to one interface module.

The 3170-PDP is a Network Interface Adapter that communicates between the FLEX I/O module backplane and AtlasPC/Master across the PROFIBUS DP network. The 3170-PDP module is a slave device to the AtlasPC control, and is a master controller of the FLEX I/O modules. The I/O data exchange occurs as follows: Output data is sent from the AtlasPC control across the PROFIBUS DP network to the 3170-PDP adapter. The network interface adapter then automatically transfers the data across the FLEX I/O backplane to the output modules. Inputs from the input modules are collected by the network interface adapter via the backplane and sent across the PROFIBUS DP network to the AtlasPC control.

In order to simplify the nomenclature used in creating the GAP application, certain naming conventions were changed with respect to the manufacturer's naming convention. In this example, Woodward refers to the node address as the Group address. The 3170-PDP node address (Group address), is set by using the 2–position thumbwheel switch. In this example the address is set to 01. Use a pen to press either the + or – buttons to change the number.

Upon power-up, the 3170-PDP goes to an initialization state and performs a self-test (memory check, data memory clear). If a failure occurs, the interface adapter transitions to a faulted state and waits for reset (cycle power). Otherwise, the adapter begins monitoring the network (run state) for messages.

In this example, the power wiring is daisy—chained to the Network Interface adapter and then to the terminal bases. See Figure 6-1 for Allen-Bradley Flex I/O configuration layout.

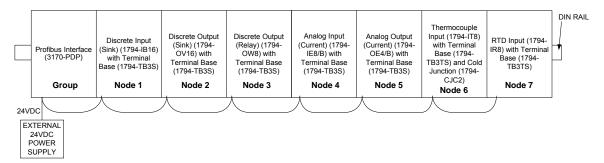



Figure 6-1. Allen-Bradley Flex I/O Configuration

#### **Address Spreadsheet**

The I/O map for a module is divided into read words and write words. Read words consist of input and status words, and write words consist of output and configuration words. The number of read words or writes words can be 0 or more.

In this example, the first read word received by the AtlasPC control from the Network Interface Adapter (3170-PDP) is the Adapter Status Word. This is followed by the input data from each Node, in the order of the installed I/O modules. The Input data from Node 1 is first after the status word, followed by Input data from Node 2, and so on up to slot 7. The Output data is received by the Network Interface Adapter in the order of the installed I/O modules. The Output data for Node 1 is received first, followed by the Output data for Node 2, and so on up to slot 7. All bits in the adapter write word are reserved and therefore are not used by the GAP application.

To keep track of the addressing for all of the reads and write addresses, the creation of an address spreadsheet is very useful. This address spreadsheet can be derived from the GSD file supplied by the manufacturer of the network interface module (head).

The GSD file defines how the network interface module interacts with the I/O modules being used. The GSD file can be downloaded from the Internet at the network interface module manufacturer's site. It needs to be imported into the Applicom configuration program to create the necessary configuration files.

### **Applicom Setup Procedure**

- 1. In ApplicomIO Console, select Description, Add Board.
- Select Diagnostic and Manual Configuration.
- 3. Select PC104/ISA and PC104 DPIO.
- 4. Set the IRQ to 5.
- 5. Select OK.
- 6. Select Library, Add. Locate the ProSoft GSD file, psft0882.gsd.



This PSFT0882.GSD file is used by ApplicomIO tool to help set up the system. The ApplicomIO configuration tool automatically reads the PSFT0882.GSD file and extracts defaults used in the data exchange. The GSD file is in ASCII format and can be viewed with any text editor.

- 7. 7) Open ProSoft Technology Inc and select 3170-PDP.
- 8. 8) Select Library, Insert in Configuration. In the Modules Configuration tab, select and add each module in the Profibus string, including the adapter and any empty slots, and verify that they are listed in the correct order. This tells how many input and output bytes are allocated to each module. In the GSD file, there are two types of configurations for each type of module (condensed and full format).



When setting up the ApplicomIO configuration, the Big Endian and Little Endian option reverses the order of the bytes in a word for the Analog reads and writes. Big Endian is high byte first. Always use the Big Endian option. Doesn't apply to discrete read and write words.

# **IMPORTANT**

The condensed configuration does not use all reads and writes for all of the modules as seen in the full format configuration and on the Memory Map tables shown in the manufactures documentation. In this example, the condensed configuration was used for setting up the addressing spreadsheet. Verify the number of reads and writes for each module in GSD file. Configure the required reads and writes in the spreadsheet accordingly.

Addressing is sequential starting with the slave network interface module, which gets the first read word and the first write word. The rest are addressed according to how many read words and write words are associated with each module, and in what order the modules are installed. Addressing begins at 0, not 1. For example, an IB16 module has one read and one write word, and the OV16 module has two write words. When configuring a slave interface module with one IB16 module followed by one OV16 module, the slave interface module is assigned read bits 0 through 15 (one word) and write bits 0 through 15 (one word), the IB16 module gets read bits 16 through 31 (one word) and write bits 32 through 63 (two words).

Based on the GSD file, the address spreadsheet can be calculated. Using the configuration of the example, the following address spreadsheet was generated. See Table 6-1 for the address spreadsheet.

After creation of the address spreadsheet, the functionality associated with these addresses must be obtained. This is done by reviewing the documentation for each module supplied by the manufacturer.



The number of read and write addresses between the documented Memory Map and the GSD file may not always agree. When creating the address spreadsheet, always allocate the number of addresses specified in the GSD file.

Use the following documents from the manufacturer to obtain the Memory Maps and related information.

| Module                  | Document P/N    |
|-------------------------|-----------------|
| Discrete Input (Sink)   | 1794-5.4        |
| Discrete Output (Sink)  | 1794-5.29       |
| Discrete Output (Relay) | 1794-5.19       |
| Analog Input (Current)  | 1794-5.6        |
| Analog Output (Current) | 1794-5.5        |
| Thermocouple Input      | 1794-6.5.7      |
| RTD Input               | 1794-6.5.4      |
| Profibus Interface      | FLEX-UM-PDP-1.2 |

| 3170-PDP                                                                                                                                                                                                                                                                                                                                                                                                                                            | Module     | Word # | Read Address Bits | Write Address Bits |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------------------|--------------------|
| 1794-IB16                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3170-PDP   | 0      | 0-15              | 0-15               |
| 1794-OV16                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0      |                   | 16-31              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1794-OV16  | 0      | None              |                    |
| 1794-IE8/B                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |        |                   | 48-63              |
| 1 48-63 2 64-79 3 80-95 4 96-111 5 112-127 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 112-127 2 128-143 3 44-159 4 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527 | 1794-OW8   | 0      | None              | 64-79              |
| 2 64-79 3 80-95 4 96-111 5 112-127 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 1 112-127 128-143 3 144-159 4 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                | 1794-IE8/B | 0      | 32-47             | 80-95              |
| 3 80-95 4 96-111 5 112-127 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 1 112-127 128-143 144-159 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1794-IR8 0 368-383 1 256-271 1 384-399 1792-287 2 400-415 3 3416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527     |            | 1      | 48-63             |                    |
| 4 96-111 5 112-127 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 1 12-127 128-143 3 144-159 4 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 1 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                       |            | 2      | 64-79             |                    |
| 5 112-127 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 112-127 128-143 3 144-159 4 160-175 176-191  1794-IT8 0 192-207 1 208-223 2 224-239 3 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 270-415 384-399 272-287 2 400-415 384-399 272-287 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                   |            | 3      | 80-95             |                    |
| 6 128-143 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 1 128-143 3 144-159 4 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                   |            | 4      | 96-111            |                    |
| 7 144-159 8 160-175  1794-OE4/B 0 176-191 96-111 1 12-127 128-143 3 144-159 4 160-175 5 176-191  1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                      |            | 5      | 112-127           |                    |
| 1794-OE4/B                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 6      | 128-143           |                    |
| 1794-OE4/B  1 1 1 1 1 1 1 12-127 128-143 3 144-159 160-175 176-191  1794-IT8  0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8  0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                 |            | 7      | 144-159           |                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 8      | 160-175           |                    |
| 2 3 128-143 144-159 160-175 176-191 1794-IT8 0 192-207 192-207 192-207 1 208-223 208-223 2 224-239 224-239 224-239 3 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367 1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                                            | 1794-OE4/B | 0      | 176-191           | 96-111             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1      |                   | 112-127            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 2      |                   | 128-143            |
| 5 176-191 1794-IT8 0 192-207 192-207 1 208-223 208-223 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                                                                             |            | 3      |                   | 144-159            |
| 1794-IT8  0 192-207 192-207  1 208-223 208-223  2 224-239 224-239  3 240-255 240-255  4 256-271  5 272-287  6 288-303  7 304-319  8 320-335  9 336-351  10 352-367  1794-IR8  0 368-383 256-271  1 384-399 272-287  2 400-415 288-303  3 416-431  4 432-447  5 448-463  6 464-479  7 480-495  8 496-511  9 512-527                                                                                                                                  |            | 4      |                   | 160-175            |
| 1 208-223 208-223<br>2 224-239 224-239<br>3 240-255 240-255<br>4 256-271<br>5 272-287<br>6 288-303<br>7 304-319<br>8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                          |            | 5      |                   | 176-191            |
| 2 224-239 224-239 3 240-255 240-255 4 256-271 5 272-287 6 288-303 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                                                                                                                                    | 1794-IT8   | 0      | 192-207           | 192-207            |
| 3 240-255<br>4 256-271<br>5 272-287<br>6 288-303<br>7 304-319<br>8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                            |            | 1      | 208-223           | 208-223            |
| 4 256-271<br>5 272-287<br>6 288-303<br>7 304-319<br>8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                         |            | 2      | 224-239           | 224-239            |
| 5 272-287<br>6 288-303<br>7 304-319<br>8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                      |            | 3      | 240-255           | 240-255            |
| 6 288-303<br>7 304-319<br>8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                   |            | 4      | 256-271           |                    |
| 7 304-319 8 320-335 9 336-351 10 352-367  1794-IR8 0 368-383 256-271 1 384-399 272-287 2 400-415 288-303 3 416-431 4 432-447 5 448-463 6 464-479 7 480-495 8 496-511 9 512-527                                                                                                                                                                                                                                                                      |            | 5      | 272-287           |                    |
| 8 320-335<br>9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                             |            | 6      | 288-303           |                    |
| 9 336-351<br>10 352-367<br>1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                          |            | 7      | 304-319           |                    |
| 10 352-367  1794-IR8 0 368-383 256-271  1 384-399 272-287  2 400-415 288-303  3 416-431  4 432-447  5 448-463  6 464-479  7 480-495  8 496-511  9 512-527                                                                                                                                                                                                                                                                                           |            | 8      | 320-335           |                    |
| 1794-IR8 0 368-383 256-271<br>1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                     |            | 9      | 336-351           |                    |
| 1 384-399 272-287<br>2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                   |            | 10     | 352-367           |                    |
| 2 400-415 288-303<br>3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                        | 1794-IR8   | 0      | 368-383           | 256-271            |
| 3 416-431<br>4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                             |            | 1      | 384-399           | 272-287            |
| 4 432-447<br>5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                          |            | 2      | 400-415           | 288-303            |
| 5 448-463<br>6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                                       |            | 3      | 416-431           |                    |
| 6 464-479<br>7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                                                    |            | 4      | 432-447           |                    |
| 7 480-495<br>8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 5      | 448-463           |                    |
| 8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 6      | 464-479           |                    |
| 8 496-511<br>9 512-527                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 7      | 480-495           |                    |
| 9 512-527                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 8      |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 9      |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 10     | 528-543           |                    |

Table 6-1. Profibus Bit Address Spreadsheet

#### **GAP Application**

When setting up a new GAP application, create the chassis block with the appropriate network interface configuration for the AtlasPC control chosen. In Figure 6-2, an Applicom Profibus Master Network interface adapter is located in slot 6 and an Applicom Master DeviceNet Network interface adapter in slot 7. The DeviceNet slot is not used in this example, but will be used in the DeviceNet example (see Allen-Bradley Flex I/O DeviceNet Configuration below).

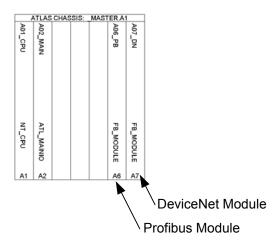



Figure 6-2. AtlasPC Chassis GAP Block

When creating a new GAP application, the Applicom Profibus module is defined with the FB\_MODULE hardware block from the FieldBus MODULES menu. It is generated automatically when "Generate channel sheet(s)" is chosen in the chassis configuration. If more than one Profibus network interface module is going to be connected to the A6 interface, then use the Append Rpt button to create additional IO\_B\_X input fields within the FB\_MODULE block. See Figure 6-3 for example of FB\_MODULE with two Profibus interface groups. Only one interface group is used in the following example.

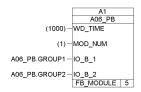



Figure 6-3. Example of GAP Application FB Module

The next GAP block that connects to the FB\_MODULE block is the FB\_EQUIP block. This block can be found under the Hardware Group, select the FB\_MODULES tab and then select the FB\_EQUIP block. This block is used to define the Profibus network interface adapter. Use the Append Rpt button to create additional IO\_B\_X fields within the FB\_EQUIP block. Every FB I/O block used for this distributed I/O group needs an IO\_B\_X field. If there are many I/O blocks, as in this example, the FB\_EQUIP block IO\_B\_X fields can't all be displayed on a single FB\_EQUIP block. To simplify the block, only the first channel for each node is shown. All other input channels are hidden. See Figure 6-4 for FB\_EQUIP setup example.

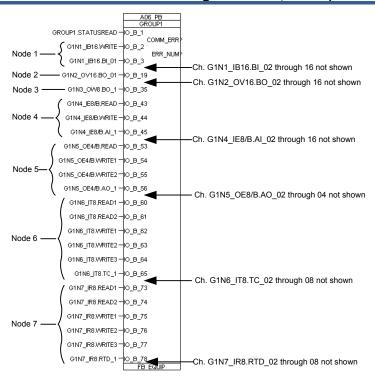



Figure 6-4. FB\_EQUIP Block Example

The COMM\_ERR output goes TRUE if there is a Communications error from the PC104 Profibus Master to the individual Profibus Slave. The ERR\_NUM output displays the error number to define the type of error the Profibus slave has detected (See Table 12.7.1.1-2, Applicom Error Num Table Definition). It has been found that if there is a loss of communications between the Profibus master and slave occurs, the COMM\_ERR will go true and ERR\_NUM will be 33. The COMM\_ERR will remain true until communications is restored.

| Error | Definition                                                                                                                                                                                                                                    |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | No anomaly detected. The function took place correctly.                                                                                                                                                                                       |
| 1     | Unknown function. The requested function is not supported.                                                                                                                                                                                    |
| 2     | Incorrect address. The address of the variable you are soliciting is incorrect.                                                                                                                                                               |
| 3     | Incorrect data. Further details :Profibus DP protocol :- Wrong initialization of the                                                                                                                                                          |
|       | parameters related to the configuration of the equipment Start the configuration again and import the GSD file.                                                                                                                               |
| 4     | Irretrievable data.                                                                                                                                                                                                                           |
| 6     | Layer 2 negative acknowledgment from the equipment (NACK). Further details :Profibus DP protocol:- NO (Not Ok) , remote equipment is missing or defective.                                                                                    |
| 10    | Layer 2 negative acknowledgment from the equipment (NACK).Further details :Protocol Profibus:- UE (User Error), Error in remote equipment.                                                                                                    |
| 11    | Layer 2 negative acknowledgment from the equipment (NACK).Profibus Protocol:-<br>RR (Remote Resource), Not enough resources in remote equipment. Or invalid<br>initialization parameters.                                                     |
| 12    | Layer 2 negative acknowledgment from the equipment (NACK). Further details :Profibus Protocol:- RS (Remote Service), The layer 2 service used is not authorized on the SAP or the SAP is not activated.                                       |
| 13    | Layer 2 negative acknowledgment from the equipment (NACK).Further details :Profibus Protocol:- RDL (Response FDL/FMA1/2 Data Low), Not enough resources in remote equipment to reply in low priority.                                         |
| 14    | Layer 2 negative acknowledgment from the equipment (NACK).Further details :Profibus Protocol:- RDH (Response FDL/FMA1/2 Data High), Not enough resources in remote equipment to reply in high priority. Or invalid initialization parameters. |
| 15    | Profibus Protocol:- LS (Local Service), local SAP not activated.                                                                                                                                                                              |
| 16    | Profibus Protocol:- NO (Not OK), Significance dependent on layer 2 service.                                                                                                                                                                   |
| 21    | Profibus Protocol:- IV (Invalid parameter in request), Further details : TS ApplicomIO® = adr equipment. TS or adr equipment > to HSA                                                                                                         |
| 32    | Bad parameter passed into the function. Incorrect number of variables.                                                                                                                                                                        |
| 33    | Response time fault (Time-Out).Further details :- The remote equipment is missing- the data of the local slave DP is not polled by another master.                                                                                            |
| 36    | Equipment not configured. Define the equipment configuration with PCCONFIO and start again the ApplicomIO® product.                                                                                                                           |

Table 6-2. Applicom Error Num Table Definition

There are two approaches to configuring the I/O blocks (FB\_BI, FB\_BO, FB\_AI, and FB\_AO). One way would be to use one block and use the repeat option to create multiple fields within the block. This approach was used in this example to read status bits (FB\_BI) such as underrange, overrange, etc. and to set functions (FB\_BO) such as filter times, ranges, etc. The other way to configure the application would be to use an I/O block for every channel or every bit. This approach was used to create individual channels. Alternatively, FB\_INITA and FB\_INITB blocks could be used for writes that only need to occur on power-up. In this example, the FB\_INITA and FB\_INITB blocks are not used.

#### **Nomenclature**

When creating a new GAP application, it is important to establish a well organized block naming convention up front. Once done, it is easier to find specific functions and I/O within a large GAP application. In this example, Woodward has formulated certain nomenclature rules to facilitate ease in navigating through the example application. Here are some rules to follow:

- 1. The AtlasPC control is always referred to as the A1 Chassis. If there were more than one AtlasPC control per system, then they would be A2, A3, etc.
- 2. The board slots in the AtlasPC control are referred to as slots A01 A07. The Profibus slot is A06 and the DeviceNet slot is A07 in this example.
- 3. The Profibus network may consist of one or more network interface adapters, (3170-PDP). Each adapter (referred to as Nodes by Allen-Bradley) and its associated modules are listed as groups G1, G2, etc.
- 4. A group may consist of one to eight I/O modules. These modules (referred to as slots by Allen-Bradley) are listed as nodes N1\_, N2\_, etc., followed by the module type.
- 5. To designate status and config. blocks, Read or Write followed by a 1, 2, or 3 is used to delineate individual words written or read from a module.
- 6. A period is used to separate the category, block name, and block field nomenclature.
- 7. In the table below, a GAP block that has a single channel per block is referred to as a configuration type 1. These blocks are named with Category = G1Nx\_xxxx, Block name = BI\_01, BI\_02, etc. or BO\_01, BO\_02, etc.
- 8. A GAP block that has multiple bits per block is referred to as a configuration type 2. These blocks are named with Category = G1Nx\_xxxx, Block name = READ1, READ2, etc. or WRITE1, WRITE2, etc.

For this example, the naming convention has been setup as follows.

| Module Type   | Block Type | Nomenclature        | Configuration Type |
|---------------|------------|---------------------|--------------------|
| All           | FB_MODULE  | A1.A06_PB           | N/A                |
| All           | FB_EQUIP   | A06_PB.GROUP1       | N/A                |
| IB16 (Read)   | FB_BI      | G1N1_IB16.BI_01, 02 | 2, etc. 1          |
| IB16 (Write)  | FB_BO      | G1N1_IB16.WRITE     | 2                  |
| OV16 (Write)  | FB_BO      | G1N2_OV16.BO_01,    | 02, etc. 1         |
| OW8 (Write)   | FB_BO      | G1N3_OW8.BO_1, 2    | , etc. 1           |
| IE8/B (Read)  | FB_BI      | G1N4_IE8/B.READ     | 2                  |
| IE8/B (Write) | FB_BO      | G1N4_IE8/B.WRITE    | 2                  |
| IE8/B (Read)  | FB_AI      | G1N4_IE8/B.AI_1, 2, | etc. 1             |
| OE4/B (Read)  | FB_BI      | G1N5_OE4/B.READ     | 2                  |
| OE4/B (Write) | FB_BO      | G1N5_OE4/B.WRITE    | 1 2                |
| OE4/B (Write) | FB_BO      | G1N5_OE4/B.WRITE    |                    |
| OE4/B (Write) | FB_AO      | G1N5_OE4/B.AO_1,    |                    |
| IT8 (Read)    | FB_BI      | G1N6_IT8.READ1      | 2                  |
| IT8 (Read)    | FB_BI      | G1N6_IT8.READ2      | 2<br>2             |
| IT8 (Write)   | FB_BO      | G1N6_IT8.WRITE1     | 2                  |
| IT8 (Write)   | FB_BO      | G1N6_IT8.WRITE2     | 2                  |
| IT8 (Write)   | FB_BO      | G1N6_IT8.WRITE3     | 2                  |
| IT8 (Read)    | FB_AI      | G1N6_IT8.TC_1, 2, e | tc. 1              |
| IR8 (Read)    | FB_BI      | G1N7_IR8.READ1      | 2                  |
| IR8 (Read)    | FB_BI      | G1N7_IR8.READ2      | 2                  |
| IR8 (Write)   | FB_BO      | G1N7_IR8.WRITE1     | 2 2                |
| IR8 (Write)   | FB_BO      | G1N7_IR8.WRITE2     | 2                  |
| IR8 (Write)   | FB_BO      | G1N7_IR8.WRITE3     | 2                  |
| IR8 (Read)    | FB AI      | G1N7 IR8.RTD 1, 2,  | etc. 1             |

<sup>1</sup> Single channel per block (Single Repeat)

<sup>2</sup> Multiple bits per block (Multiple Repeat)

From the GSD file, the number of read and write addresses and their order were defined based on the physical order of the modules and the memory maps defined by Allen-Bradley. The GAP application is also constructed in the same order that the modules are ordered. In setting up the first I/O module in GAP, the application must read and write to the specific addresses defined in the address spreadsheet. These read and write addresses are used to extract data from the distributed I/O modules and to set certain options. In GAP, reads are done with FB\_AI and FB\_BI blocks, writes with FB\_AO and FB\_BO blocks. AI's and AO's are addressed by the byte, while BI's and BO's are addressed by the bit. The following steps will show how to set up these FB\_XX blocks to read and write to the distributed I/O modules.



Allen-Bradley modules reverse the order of the high and low bytes of their discrete reads and writes (BI's and BO's). this has to be accommodated in the BI and BO GAP blocks as shown in Table 6-3.

See Table 6-3 for example of Boolean address order for block field numbering.

| Spreadsheet | FB_BI Address | FB_BO Address | FB_BI        | FB_BO Input |
|-------------|---------------|---------------|--------------|-------------|
| Address #   | Field         | Field         | Output Field | Field       |
| 8           | BI_ADD_1      | BO_ADD_1      | BI_V_1       | BO_V_1      |
| 9           | BI_ADD_2      | BO_ADD_2      | BI_V_2       | BO_V_2      |
| 10          | BI_ADD_3      | BO_ADD_3      | BI_V_3       | BO_V_3      |
| 11          | BI_ADD_4      | BO_ADD_4      | BI_V_4       | BO_V_4      |
| 12          | BI_ADD_5      | BO_ADD_5      | BI_V_5       | BO_V_5      |
| 13          | BI_ADD_6      | BO_ADD_6      | BI_V_6       | BO_V_6      |
| 14          | BI_ADD_7      | BO_ADD_7      | BI_V_7       | BO_V_7      |
| 15          | BI_ADD_8      | BO_ADD_8      | BI_V_8       | BO_V_8      |
| 0           | BI_ADD_9      | BO_ADD_9      | BI_V_9       | BO_V_9      |
| 1           | BI_ADD_10     | BO_ADD_10     | BI_V_10      | BO_V_10     |
| 2           | BI_ADD_11     | BO_ADD_11     | BI_V_11      | BO_V_11     |
| 3           | BI_ADD_12     | BO_ADD_12     | BI_V_12      | BO_V_12     |
| 4           | BI_ADD_13     | BO_ADD_13     | BI_V_13      | BO_V_13     |
| 5           | BI_ADD_14     | BO_ADD_14     | BI_V_14      | BO_V_14     |
| 6           | BI_ADD_15     | BO_ADD_15     | BI_V_15      | BO_V_15     |
| 7           | BI_ADD_16     | BO_ADD_16     | BI_V_16      | BO_V_16     |

Table 6-3. Example of Boolean Address Order

# ProSoft Network Interface Adapter (3170-PDP) Module



Based on the address spreadsheet, the ProSoft Network Interface Adapter 3170-PDP has one read and one write address word allocated in the memory map. According to the FLEX-UM-PDP-1.2 User Manual from ProSoft, the write word is reserved. Therefore there is no need to write to addresses 0-15. See Figure 18-5. for the read memory map for the 3170-PDP Interface Module.

# **Memory Map**

|                         | •   |                                                                                           |  |  |
|-------------------------|-----|-------------------------------------------------------------------------------------------|--|--|
| Bit Description         | Bit | Explanation                                                                               |  |  |
| I/O Module Fault        | 8   | This bit is set (1) when an error is detected in slot position 1.                         |  |  |
|                         | 9   | This bit is set (1) when an error is detected in slot position 2.                         |  |  |
|                         | 10  | This bit is set (1) when an error is detected in slot position 3.                         |  |  |
|                         | 11  | This bit is set (1) when an error is detected in slot position 4.                         |  |  |
|                         | 12  | This bit is set (1) when an error is detected in slot position 5.                         |  |  |
|                         | 13  | This bit is set (1) when an error is detected in slot position 6.                         |  |  |
|                         | 14  | This bit is set (1) when an error is detected in slot position 7.                         |  |  |
|                         | 15  | This bit is set (1) when an error is detected in slot position 8.                         |  |  |
| Reserved                | 1-7 | Reserved                                                                                  |  |  |
| Node Address<br>Changed | 0   | This bit is set (1) when the node address switch setting has been changed since power up. |  |  |

Figure 6-5. 3170-PDP Network Interface Memory Map

The node address (Group address) changed bit is set when the node address switch setting has been changed since power up. The new node address does not take affect until the adapter has been powered down and then powered back up. Until this power cycling occurs, the node address switches will not match the actual node address.

Based on this memory map, an FB\_BI read block was created to allow the GAP application to read all of the used bits. See Figure 6-6 for example of setup of STATUSREAD GAP block used to read the 3170-PDP memory map.

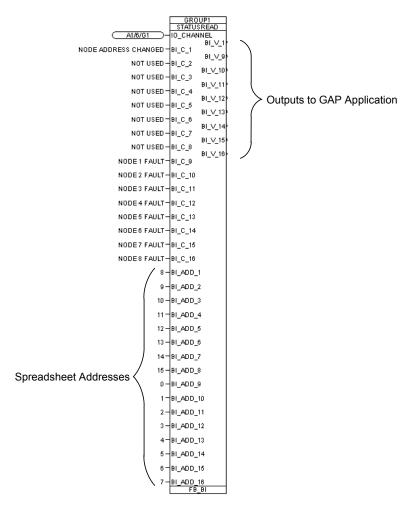
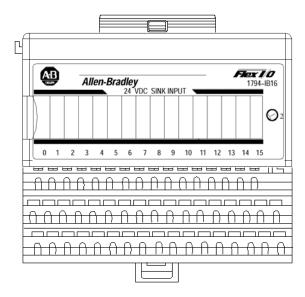




Figure 6-6. Example of 3170-PDP Memory Map Read GAP Block

## Allen-Bradley 24 Vdc Sink Input (1794-IB16) Module



In this example, the 1794-IB16 module is plugged into a 1794-TB3S base. See Figure 6-7 for example of 1794-IB16 module wiring.

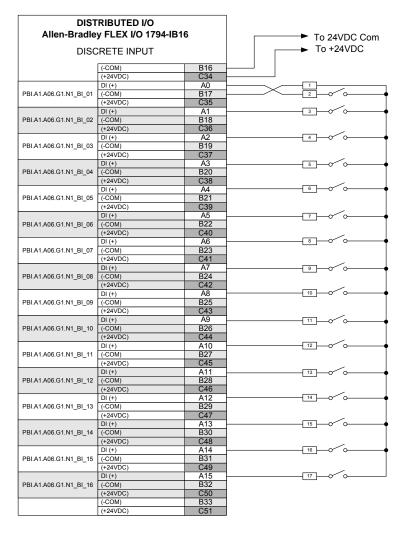



Figure 6-7. Example of 1794-IB16 Module Wiring

The memory map indicates that there are two read addresses and one write address. The condensed format used to set up the address spreadsheet only uses one read and one write address. See Figure 6-8 for memory map of Allen-Bradley 1794-IB16 Discrete input module.

#### **Memory Map**

| Dec.   | 15      | 14                                   | 13      | 12      | 11      | 10      | 09     | 08     | 07     | 06     | 05     | 04     | 03     | 02     | 01     | 00     |
|--------|---------|--------------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Read 0 | D<br>15 | D<br>14                              | D<br>13 | D<br>12 | D<br>11 | D<br>10 | D<br>9 | D<br>8 | D<br>7 | D<br>6 | D<br>5 | D<br>4 | D<br>3 | D<br>2 | D<br>1 | D<br>0 |
| Read 1 |         | C = 16 bit Counter Value of Input 15 |         |         |         |         |        |        |        |        |        |        |        |        |        |        |
| Write  | N<br>us |                                      | CF      | CR      |         |         | Not u  | ised   |        |        | FT     | 12–    | 15     | FT     | 00-    | 11     |

Where: D = Data Input - 0 = input off, 1 = input on

C = Counter value for input 15

FT = Input Filter Time

CR = Counter Reset

CF = Counter Fast – where 1 = Fast Input (raw) data, 0 = Standard Input filtered data

NOTE: C, CR and CF not available when used with any series 1794-ASB or 1794-ASB2 Remote I/O Adapter Modules

Figure 6-8. 1794-IB16 Memory Map

In this example, this module was set up with filter times of 256us for all inputs, Counter Reset set to off, and Counter set to standard input filtered data. See Figure 6-9 for input filter time bit map and Figure 6-10 for example of 1794-IB16 Write GAP block.

# **Input Filter Times**

| Bits |          |    | Description                         | 0-144                |  |  |
|------|----------|----|-------------------------------------|----------------------|--|--|
| 02   | 02 01 00 |    | Filter Time for Inputs 00–11(00–13) | Selected Filter Time |  |  |
| 05   | 04       | 03 | Filter Time for Inputs 12–15(14–17) | 1 inter time         |  |  |
| 0    | 0        | 0  | Filter Time 0 (default)             | 256µs                |  |  |
| 0    | 0        | 1  | Filter Time 1                       | 512µs                |  |  |
| 0    | 1        | 0  | Filter Time 2                       | 1ms                  |  |  |
| 0    | 1        | 1  | Filter Time 3                       | 2ms                  |  |  |
| 1    | 0        | 0  | Filter Time 4                       | 4ms                  |  |  |
| 1    | 0        | 1  | Filter Time 5                       | 8ms                  |  |  |
| 1    | 1        | 0  | Filter Time 6                       | 16ms                 |  |  |
| 1    | 1        | 1  | Filter Time 7                       | 32ms                 |  |  |

Figure 6-9. 1794-IB16 Input Filter Time Bit Map

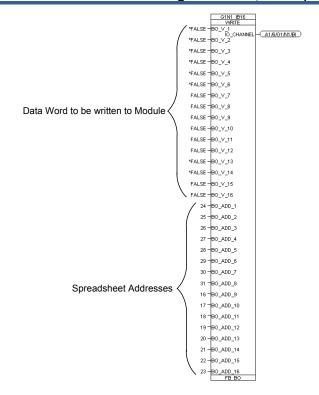



Figure 6-10. Example of 1794-IB16 Write GAP Block

To read the discrete input bits for the 1794-IB16 module, individual FB\_BI blocks were used. See Figure 6-11 for example of GAP block configuration.

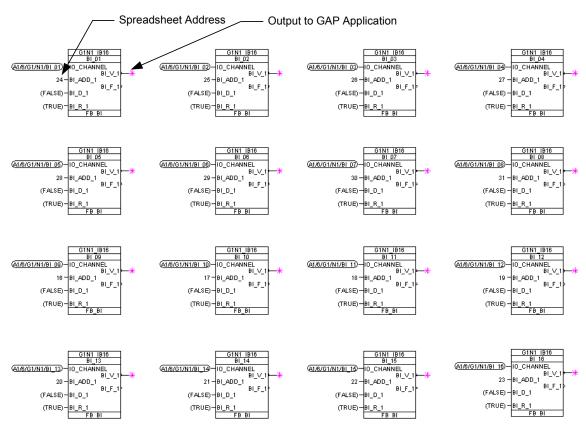
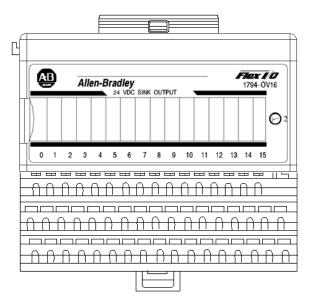




Figure 6-11. Example of 1794-IB16 Discrete Input Read GAP Blocks

Each of the FB\_BI blocks have fault indication (BI\_F\_X) and fault number (BI\_FN\_X) output fields for each channel within the block. In this example there is only one channel per block and the BI\_FN\_X field is hidden. These fault fields may be used during initial application checkout to identify programming errors. The BI\_F\_X and BI\_FN\_X fields display the same errors as the COMM\_ERR and ERR\_NUM fields in the FB\_EQUIP block. Therefore, only the FB\_EQUIP COMM\_ERR and ERR\_NUM fields need to be monitored for faults after the application and hardware has been verified to work. The FB\_BO, FB\_AI, and FB\_AO blocks also have similar fault output fields and can be treated the same as the FB\_BI block fields. The BI\_R\_X field is used to reset the fault output fields. By setting TRUE on the BI\_R\_1 input, the fault output is non-latching.

#### Allen-Bradley 24 Vdc Sink Output (1794-OV16) Module



In this example, the 1794-OV16 is connected to a Woodward 16 channel relay module. See Figure 6-12 for example of 1794-OV16 module wiring.

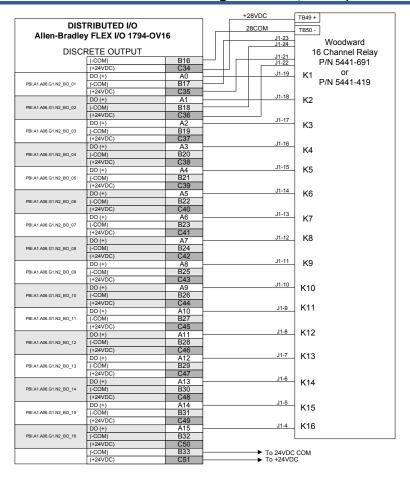



Figure 6-12. Example of 1794-OV16 Module Wiring

The memory map indicates that there are zero read addresses and one write address. The condensed format used to set up the address spreadsheet specifies zero read and two write addresses. The extra write word is not defined in the memory map therefore no GAP block is used. However this undefined address must be reserved when setting up the address spreadsheet. See Figure 6-13 for memory map of 1794-OV16 module.

# **Memory Mapping**

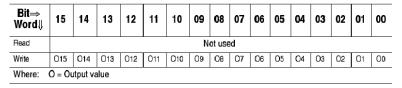



Figure 6-13. 1794-OV16 Module Memory Map

To write the discrete output bits for the 1794-OV16 module, individual FB\_BO blocks were used. See Figure 6-14 for example of GAP write block configuration.

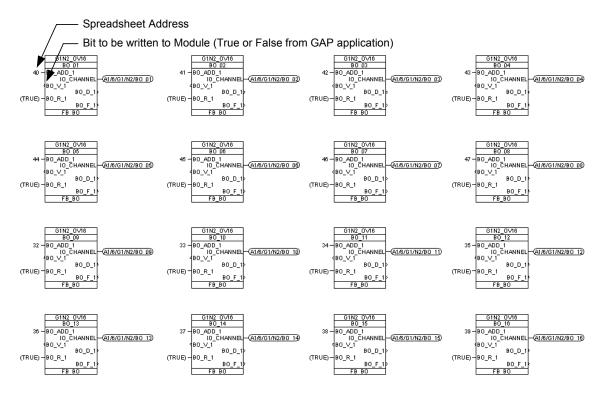
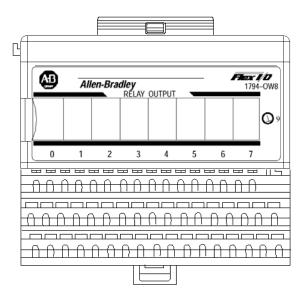




Figure 6-14. Example of 1794-OV16 GAP Write Blocks

## Allen-Bradley Relay Output (1794-OW8) Module



In this example, the relay outputs are individually fused to protect the module. See Figure 6-15 for example of 1794-OW8 module wiring.

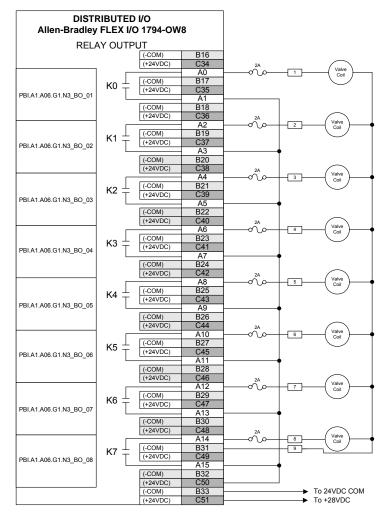



Figure 6-15. Example of 1794-OW8 Module Wiring

The memory map indicates that there are one read address and one write address. The condensed format used to set up the address spreadsheet specifies zero read and one write address. Since the read address is not used, nothing is read from this address for this example. See Figure 6-16 for memory map of 1794-OW8 module.

# **Image Table Memory Map**

| Word    |    | Memo<br>Ma <sub>l</sub> |    |        | ec. E<br>ctal E |       |    |         | Des                           | cripti | on       |    |    | For            | mat |    |
|---------|----|-------------------------|----|--------|-----------------|-------|----|---------|-------------------------------|--------|----------|----|----|----------------|-----|----|
| Read    |    | Inpu                    | ıt | 00-    | 15 (00          | 0–17) | No | ot used | d – res                       | erved  |          |    |    |                |     |    |
| Write   |    | Outp                    | ut |        | 00-0            | 7     | co | rréspo  | utput o<br>onds to<br>onds to | outpu  | it 0, 01 |    |    | Outpu<br>Outpu |     |    |
|         |    |                         |    | 08-    | 15 (10          | 0–17) | No | ot used | t                             |        |          |    |    |                |     |    |
| Dec.    | 15 | 14                      | 13 | 12     | 11              | 10    | 09 | 08      | 07                            | 06     | 05       | 04 | 03 | 02             | 01  | 00 |
| (Octal) | 17 | 16                      | 15 | 14     | 13              | 12    | 11 | 10      | 07                            | 06     | 05       | 04 | 03 | 02             | 01  | 00 |
| Write   |    | •                       | No | t used | – set           | to 0  |    |         | 07                            | O6     | O5       | 04 | О3 | 02             | 01  | 0( |

Figure 6-16. 1794-OW8 Module Memory Map

To write the discrete output bits for the 1794-OW8 module, individual FB\_BO blocks were used. See Figure 6-17 for example of GAP write block configuration.

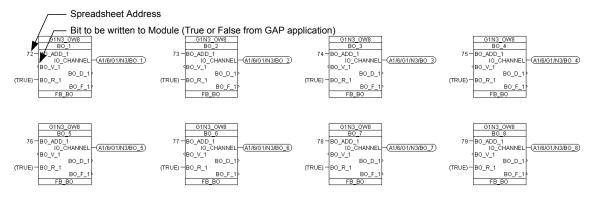
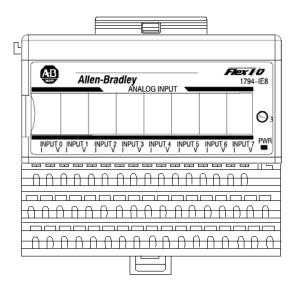




Figure 6-17. Example of 1794-OW8 GAP Write Blocks

## Allen-Bradley Analog Input (1794-IE8/B) Module



In this example, loop powered transducers are shown. See Figure 6-18 for example of 1794-IE8/B module wiring.

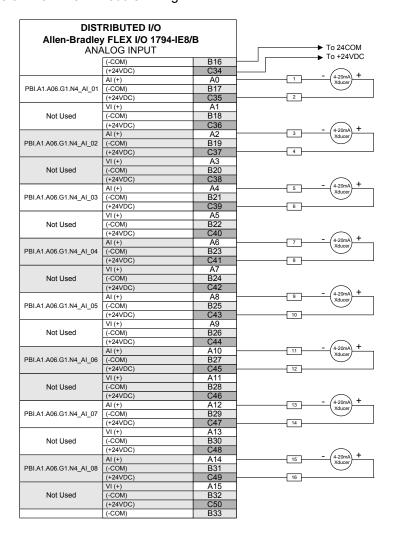



Figure 6-18. Example of 1794-IE8/B Module Wiring

The memory map indicates that there are nine read addresses and one write address. The condensed format used to set up the address spreadsheet specifies the same. See Figure 6-19 for the input memory map and Figure 6-20 for the output memory map for the 1794-IE8/B module.

## **Input Map**

| Bit⇒<br>Word | 15    | 14    | 13                                                                | 12                                                                 | 11     | 10      | 09    | 08      | 07    | 06       | 05    | 04 | 03 | 02 | 01 | 00 |
|--------------|-------|-------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------|---------|-------|---------|-------|----------|-------|----|----|----|----|----|
|              |       | l     | <u> </u>                                                          |                                                                    |        | l       | R     | ead     |       | <u> </u> |       |    | l  | l  |    |    |
| 0            | S     |       |                                                                   |                                                                    |        | A       | nalog | Input ' | Value | for Ch   | annel | 0  |    |    |    |    |
| 1            | S     |       |                                                                   |                                                                    |        | A       | nalog | Input ' | Value | for Ch   | annel | 1  |    |    |    |    |
| 2            | S     |       |                                                                   | Analog Input Value for Channel 2  Analog Input Value for Channel 3 |        |         |       |         |       |          |       |    |    |    |    |    |
| 3            | S     |       | Analog Input Value for Channel 3                                  |                                                                    |        |         |       |         |       |          |       |    |    |    |    |    |
| 4            | S     |       | Analog Input Value for Channel 3 Analog Input Value for Channel 4 |                                                                    |        |         |       |         |       |          |       |    |    |    |    |    |
| 5            | S     |       |                                                                   |                                                                    |        | A       | nalog | Input ' | Value | for Ch   | annel | 5  |    |    |    |    |
| 6            | S     |       |                                                                   |                                                                    |        | A       | nalog | Input ' | Value | for Ch   | annel | 6  |    |    |    |    |
| 7            | S     |       |                                                                   |                                                                    |        | A       | nalog | Input ' | Value | for Ch   | annel | 7  |    |    |    |    |
| 8            | PU    |       |                                                                   | Not us                                                             | ed – s | et to C | )     |         | U7    | U6       | U5    | U4 | U3 | U2 | U1 | U0 |
| Where:       | U = 1 | Under | it (in 2°<br>range<br>er up 1                                     |                                                                    | pleme  | ent)    |       |         |       |          | •     | •  |    |    | •  |    |

Figure 6-19. 1794-IE8/B Input Module Memory Map

**Underrange bits (U)**—These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, etc.

**Power Up (unconfigured state) bit (PU)**—This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.

#### **Output Map**

| Bit⇒<br>Word∜ | 15              | 14 | 13 | 12      | 11 | 10 | 09 | 08   | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
|---------------|-----------------|----|----|---------|----|----|----|------|----|----|----|----|----|----|----|----|
|               |                 |    |    |         |    |    | W  | rite |    |    |    |    |    |    |    |    |
| 0             | C7              | C6 | C5 | C4      | C3 | C2 | C1 | C0   | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 |
|               | C = C<br>F = Fu |    |    | ect bit |    |    | •  |      |    |    |    |    |    |    | •  | •  |

## **Range Selection Bits**

| Channel No.      | Ch | . 0 | Ch | . 1 | Ch | 1. 2 | Ch | ı. 3 | Ch | . 4 | Ch | . 5 | Ch | . 6 | Ch | . 7 |
|------------------|----|-----|----|-----|----|------|----|------|----|-----|----|-----|----|-----|----|-----|
|                  | F0 | CO  | F1 | C1  | F2 | C2   | F3 | СЗ   | F4 | C4  | F5 | C5  | F6 | C6  | F7 | C7  |
| Decimal Bits     | 00 | 08  | 01 | 09  | 02 | 10   | 03 | 11   | 04 | 12  | 05 | 13  | 06 | 14  | 07 | 15  |
| 0-10V dc/0-20mA  | 1  | 0   | 1  | 0   | 1  | 0    | 1  | 0    | 1  | 0   | 1  | 0   | 1  | 0   | 1  | 0   |
| 4-20mA           | 0  | 1   | 0  | 1   | 0  | 1    | 0  | 1    | 0  | 1   | 0  | 1   | 0  | 1   | 0  | 1   |
| -10 to +10V dc   | 1  | 1   | 1  | 1   | 1  | 1    | 1  | 1    | 1  | 1   | 1  | 1   | 1  | 1   | 1  | 1   |
| Off <sup>1</sup> | 0  | 0   | 0  | 0   | 0  | 0    | 0  | 0    | 0  | 0   | 0  | 0   | 0  | 0   | 0  | 0   |

C = Configure select bit

Figure 6-20. 1794-IE8/B Output Module Memory Map

F = Full range bit

When configured to Off, individual input channels will return 0000H.

In this example, this write block is set up with Range Select bits for all channels set to 0-21mA. The read block is set up to be able to read the status of the underrange bits for all channels and the Power Up bit (PU). See Figure 6-21 for example of 1794-IE8/B Read and Write GAP blocks.

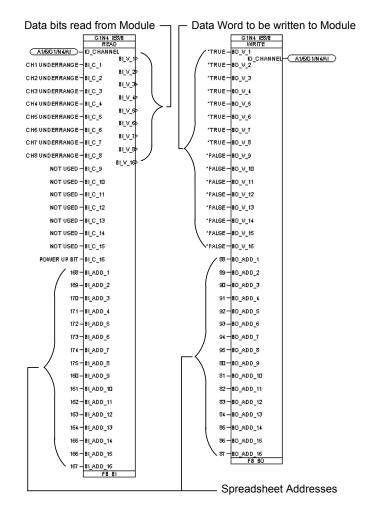



Figure 6-21. Example of 1794-IE8/B Read and Write GAP Blocks

To read the analog input words for the 1794-IE8/B module, individual FB\_AI blocks were used. The addressing for the analog input blocks needs to be in bytes rather than bits. To convert from spreadsheet bit addresses to bytes, take the first bit of the word in the spreadsheet for the 1794-IE8/B module and divide by 8bits/byte (32÷8=4). Repeat this calculation for the rest of the addresses for each channel. The relationship between raw counts and engineering units needs to be specified in the analog read block. The raw count to milliamp relationship can be found in the Allen-Bradley manual 1794-6.5.2. See Figure 6-22 for Analog Data Format Table. The table specifies counts in Hexadecimal form and the FB\_AI block requires the AI\_RL\_1 and AI\_RH\_1 fields to be entered in decimal form. Under the 0-20mA column in the Analog Data Format Table, 21mA is equivalent to 7FF8 Hexadecimal. Converting 7FF8 to decimal equals 32760 Counts High. In this example the block was scaled to 0-21mA (engineering units) for 0-32760 counts from the module. See Figure 6-23 for example of 1794-IE8/B GAP Analog Read Blocks.

| O            |             | 0 00-4 11-4- | Malhama 00  | +10 Vo | It Mode | 0-10 Volt |
|--------------|-------------|--------------|-------------|--------|---------|-----------|
| Current (mA) | 4–20mA Mode | 0-20mA Mode  | Voltage (V) | Input  | Output  | Mode      |
|              |             |              | -10.50      | 8000   | 8000    |           |
| 0.00         |             | 0000         | -10.00      | 8620   | 8618    |           |
| 1.00         |             | 0618         | -9.00       | 9250   | 9248    |           |
| 2.00         |             | 0C30         | -8.00       | 9E80   | 9E78    |           |
| 3.00         |             | 1248         | -7.00       | AAB0   | AAA8    |           |
| 4.00         | 0000        | 1860         | -6.00       | B6E0   | B6D8    |           |
| 5.00         | 0787        | 1E78         | -5.00       | C310   | C310    |           |
| 6.00         | 0F0F        | 2490         | -4.00       | CF40   | CF40    |           |
| 7.00         | 1696        | 2AA8         | -3.00       | DB70   | DB70    |           |
| 8.00         | 1E1E        | 30C0         | -2.00       | E7A0   | E7A0    |           |
| 9.00         | 25A5        | 36D8         | -1.00       | F3D0   | F3D0    |           |
| 10.00        | 2D2D        | 3CF0         | 0.00        | 0000   | 0000    | 0000      |
| 11.00        | 34B4        | 4310         | 1.00        | 0C30   | 0C30    | 0C30      |
| 12.00        | 3C3C        | 4928         | 2.00        | 1860   | 1860    | 1860      |
| 13.00        | 43C3        | 4F40         | 3.00        | 2490   | 2490    | 2490      |
| 14.00        | 4B4B        | 5558         | 4.00        | 30C0   | 30C0    | 30C0      |
| 15.00        | 52D2        | 5B70         | 5.00        | 3CF0   | 3CF0    | 3CF0      |
| 16.00        | 5A5A        | 6188         | 6.00        | 4920   | 4928    | 4928      |
| 17.00        | 61E1        | 67A0         | 7.00        | 5550   | 5558    | 5558      |
| 18.00        | 6969        | 6DB8         | 8.00        | 6180   | 6188    | 6188      |
| 19.00        | 70F0        | 73D0         | 9.00        | 6DB0   | 6DB8    | 6DB8      |
| 20.00        | 7878        | 79E8         | 10.00       | 79E0   | 79E8    | 79E8      |
| 21.00        | 7FFF        | 7FF8         | 10.50       | 7FF0   | 7FF8    | 7FF8      |

Figure 6-22. 1794-IE8/B and 1794-OE4/B Analog Data Format Table

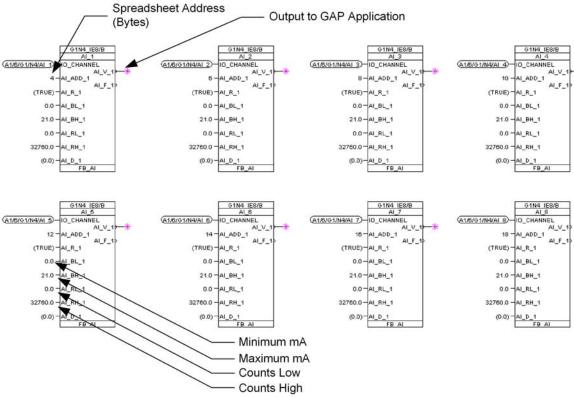
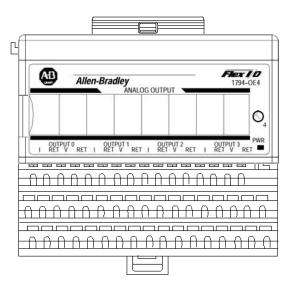




Figure 6-23. Example of 1794-IE8/B GAP Analog Write Blocks

# Allen-Bradley Analog Output (1794-OE4/B) Module



See Figure 6-24 for example of 1794-OE4/B module wiring.

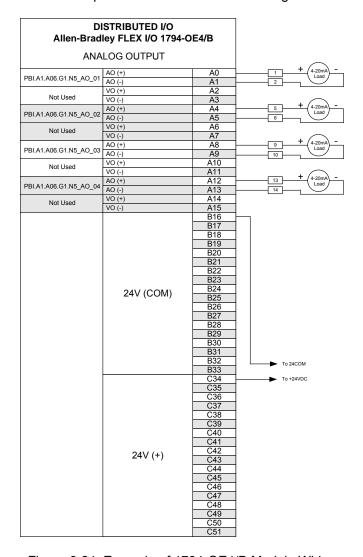



Figure 6-24. Example of 1794-OE4/B Module Wiring

The memory map indicates that there is one read address and 13 write addresses. The condensed format used to set up the address spreadsheet specifies one read address and 6 write addresses. From the output memory map addresses 6-9 are not used and 10-13 are used to specify safe state values that are not available in the condensed format. Therefore, the output memory map words 0-5 correspond to the six write words specified in the address spreadsheet. See Figure 6-25 for the input memory map and Figure 6-26 for the output memory map for the 1794-OE4/B module.

## **Input Map**

| Bit⇒<br>Word∜ | 15    | 14                      | 13                  | 12 | 11    | 10     | 09      | 08     | 07    | 06     | 05     | 04     | 03     | 02     | 01     | 00 |
|---------------|-------|-------------------------|---------------------|----|-------|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|----|
| 0             | P     |                         | Not used – set to 0 |    |       |        |         |        |       |        |        |        |        |        | W<br>0 |    |
| Where:        | volta | Diagn<br>ige ou<br>Powe | tputs.)             | )  | curre | nt out | out wir | e brol | en or | load r | esista | nce hi | gh. (N | ot use | d on   |    |

Figure 6-25. 1794-OE4/B Module Input Memory Map

# **Output Map**

| Bit⇒<br>Word∜ | 15         | 14                                       | 13                | 12                  | 11  | 10   | 09      | 08      | 07      | 06      | 05    | 04 | 03     | 02     | 01     | 00     |
|---------------|------------|------------------------------------------|-------------------|---------------------|-----|------|---------|---------|---------|---------|-------|----|--------|--------|--------|--------|
| 0             | S          |                                          |                   |                     |     |      | Ana     | log Da  | ata – ( | Channe  | el 0  |    |        |        |        | •      |
| 1             | S          |                                          |                   |                     |     |      | Ana     | ilog Da | ata – ( | Channe  | el 1  |    |        |        |        |        |
| 2             | S          |                                          |                   |                     |     |      | Ana     | alog Da | ata – ( | Channe  | el 2  |    |        |        |        |        |
| 3             | S          |                                          |                   |                     |     |      | Ana     | ilog Da | ata – ( | Channe  | el 3  |    |        |        |        |        |
| 4             |            |                                          |                   |                     | Not | used | – set t | о 0     |         |         |       |    | M<br>3 | M<br>2 | M<br>1 | M<br>0 |
| 5             | Not        | used                                     | – set t           | 0 0                 | C3  | C2   | C1      | – set t | 0 0     | F3      | F2    | F1 | F0     |        |        |        |
| 6–9           |            |                                          |                   |                     |     |      | Not     | used    | – set t | 0 0     |       |    |        |        |        |        |
| 10            | S          |                                          |                   |                     |     |      | Safe s  | state v | alue fo | or char | nel 0 |    |        |        |        |        |
| 11            | S          |                                          |                   |                     |     |      | Safe s  | state v | alue fo | or char | nel 1 |    |        |        |        |        |
| 12            | S          |                                          |                   |                     |     |      | Safe s  | state v | alue fo | or char | nel 2 |    |        |        |        |        |
| 13            | S          |                                          |                   |                     |     |      | Safe s  | state v | alue fo | or char | nel 3 |    |        |        |        |        |
| Where:        | M =<br>C = | Sign bi<br>Multipl<br>Config<br>Full rar | lex co<br>jure se | ntrol b<br>elect bi | it  | ent) |         |         |         |         |       |    |        |        |        |        |

Figure 6-26. 1794-OE4/B Module Output Memory Map

Multiplex control bit (M) for individual channels. These bits control the safe state analog outputs. – Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, and so on.

1 = use words 0,1,2 or 3 as directed by channel number n.

0 = use words 10, 11, 12 or 13 as directed by channel number n.

For definition of Fx and Cx bits, see Figure 6-27.

## Range Selection Bits

| Channel No.         | Ch | . 0 | Ch | . 1 | Ch | . 2 | Ch | . 3 |
|---------------------|----|-----|----|-----|----|-----|----|-----|
|                     | F0 | C0  | F1 | C1  | F2 | C2  | F3 | C3  |
| <b>Decimal Bits</b> | 00 | 08  | 01 | 09  | 02 | 10  | 03 | 11  |
| 0-10V<br>dc/0-20mA  | 1  | 0   | 1  | 0   | 1  | 0   | 1  | 0   |
| 4–20mA              | 0  | 1   | 0  | 1   | 0  | 1   | 0  | 1   |
| -10 to +10V dc      | 1  | 1   | 1  | 1   | 1  | 1   | 1  | 1   |
| Off <sup>1</sup>    | 0  | 0   | 0  | 0   | 0  | 0   | 0  | 0   |

C = Configure select bit

Figure 6-27. 1794-OE4/B Write Range Selection Bits

In this example, the read block is set up to monitor the four broken wire addresses and the power up bit on the module. The write blocks are set up to configure the module for multiplex control and 0-20mA range. Since word addresses 10-13 are not defined with the condensed format in the GSD file, the multiplex control functionality is not relevant. Therefore all of the M bits were set to true. See Figure 6-28 for example of 1794-OE4/B Read and Write GAP blocks.

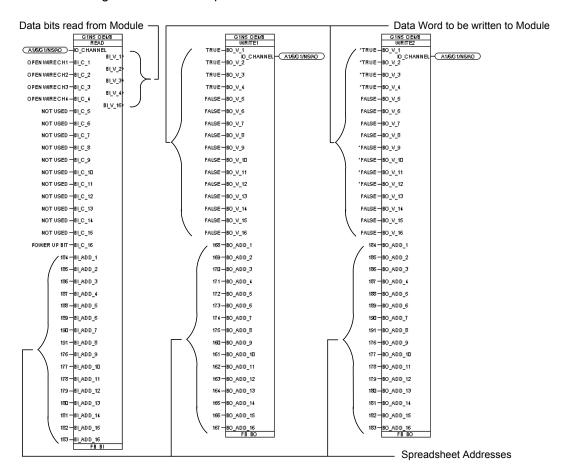



Figure 6-28. Example of 1794-OE4/B Read and Write GAP Blocks

F = Full range bit

When configured to Off, individual channels will drive 0V/0mA.

To write the analog output words for the 1794-OE4/B module, individual FB AO blocks were used. The addressing for the analog output blocks needs to be in bytes like the analog input blocks. To convert from spreadsheet bit addresses to bytes, take the first bit of the word in the spreadsheet for the 1794-OE4/B module and divide by 8 bits/byte (96÷8=12). Repeat this calculation for the rest of the addresses for each channel. For the 1794-OE4/B module to output the correct current, the GAP block must convert the engineering units requested to raw counts used by the module. The milliamp to raw count relationship can be found in the Allen-Bradley manual 1794-6.5.2. See Figure 6-22 for Analog Data Format Table. The table specifies counts in Hexadecimal form and the FB AO block requires the AO\_RL\_1 and AO\_RH\_1 fields to be entered in decimal form. Under the 0-20mA column, of the Analog Data Format Table, 21mA is equivalent to 7FF8 Hexadecimal and 0mA is 0000 Hexadecimal. Converting 7FF8 to decimal equals 32760 Counts High. In this example the block was scaled to 0-21mA (engineering units) for 0-32760 counts from the module. See Figure 6-29 for example of 1794-OE4/B GAP Analog Write Blocks.

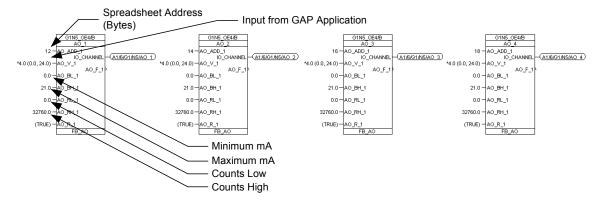
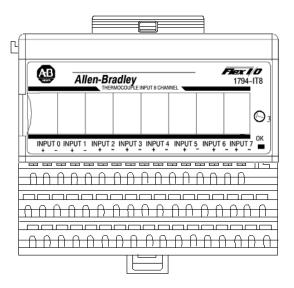




Figure 6-29. Example of 1794-OE4/B GAP Analog Write Blocks

**NOTICE** 

An AO requires a limiter on the input value to keep it from exceeding the 21 mA value. Values above 21 mA will roll back over to zero.

## Allen-Bradley Thermocouple Input (1794-IT8) Module



In this example, the first six channels are used for thermocouples and the last two channels are used for monitoring the reference junction temperatures. See Figure 6-30 for example of 1794-IT8 module wiring.

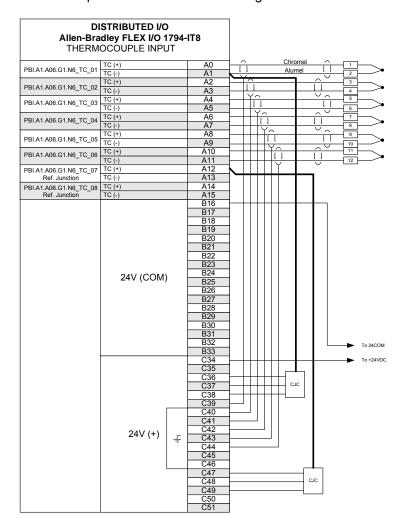



Figure 6-30. Example of 1794-IT8 Module Wiring

The memory map indicates that there are eleven read addresses and 3 write address. The condensed format used to set up the address spreadsheet specifies eleven read addresses and 4 write addresses. The extra write word is not defined in the memory map, therefore no GAP block is used. However this undefined address must be reserved when setting up the address spreadsheet. In this example the undefined write address was allocated to addresses 240 through 255. See Figure 6-31 for the input memory map and Figures 6-32 through 6-35 for the output memory map for the 1794-IT8 module.

| hermocoup   |    | _                                            | _  | _      | ·      |            | _           |              |           |          |           |        |           |                  |             |             |
|-------------|----|----------------------------------------------|----|--------|--------|------------|-------------|--------------|-----------|----------|-----------|--------|-----------|------------------|-------------|-------------|
| Decimal Bit | 15 | 14                                           | 13 | 12     | 11     | 10         | 09          | 08           | 07        | 06       | 05        | 04     | 03        | 02               | 01          | 00          |
| Octal Bit   | 17 | 16                                           | 15 | 14     | 13     | 12         | 11          | 10           | 07        | 06       | 05        | 04     | 03        | 02               | 01          | 00          |
| Read Word 0 |    |                                              |    |        |        |            |             |              | Reserve   | ed       |           |        |           |                  |             |             |
| 1           |    |                                              |    |        |        |            |             | Chani        | nel 0 Inp | out Data | ı         |        |           |                  |             |             |
| 2           |    |                                              |    |        |        |            |             | Chani        | nel 1 Inp | ut Data  | ı         |        |           |                  |             |             |
| 3           |    | Channel 2 Input Data<br>Channel 3 Input Data |    |        |        |            |             |              |           |          |           |        |           |                  |             |             |
| 4           |    | Channel 3 Input Data                         |    |        |        |            |             |              |           |          |           |        |           |                  |             |             |
| 5           |    | Channel 3 Input Data<br>Channel 4 Input Data |    |        |        |            |             |              |           |          |           |        |           |                  |             |             |
| 6           |    |                                              |    |        |        |            |             | Chan         | nel 5 Inp | ut Data  | ı         |        |           |                  |             |             |
| 7           |    |                                              |    |        |        |            |             | Chani        | nel 6 Inp | ut Data  | ı         |        |           |                  |             |             |
| 8           |    |                                              |    |        |        |            |             | Chan         | nel 7 Ing | ut Data  | l         |        |           |                  |             |             |
| 9           |    |                                              |    | Overra | ange B | ts         |             |              |           |          |           | Under  | range E   | lits             |             |             |
| 10          | 0  | 0                                            | 0  | 0      | 0      | Bad<br>Cal | Cal<br>Done | Cal<br>Range | 0         | Diag     | gnostic S | Status | Pwr<br>Up | Bad<br>Structure | CJC<br>over | CJC<br>Unde |

Figure 6-31. 1794-IT8 Module Input Memory Map

**Underrange bits**—These bits are set if the input signal is below the input channel's minimum range.

**Overrange bits**—These bits are set if 1) the input signal is above the input channel's maximum range, or 2) an open detector is detected.

**Cold Junction sensor underrange bit**—This bit is set if the cold junction temperature is below 0 °C.

**Cold Junction sensor overrange bit**—This bit is set if the cold junction temperature is above 70 °C.

**Bad Structure**—This bit is set if an invalid thermocouple type is selected. **Powerup bit**—This bit is set (1) until configuration data is received by the module.

**Critical Error bits**—If these bits are anything other than all zeroes, return the module to the factory for repair.

Calibration Range bit—Set to 1 if a reference signal is out of range during calibration

**Calibration Done bit**—Set to 1 after an initiated calibration cycle is complete. **Calibration Bad bit**—Set to 1 if the channel has not had a valid calibration.

| Thermocouple/        | mV l         | Inpu   | t Mo  | dul     | e (17   | 94-IT   | '8) W    | rite |            |                  |           |            |    |          |           |      |
|----------------------|--------------|--------|-------|---------|---------|---------|----------|------|------------|------------------|-----------|------------|----|----------|-----------|------|
| Dec. Bit             | 15           | 14     | 13    | 12      | 11      | 10      | 09       | 80   | 07         | 06               | 05        | 04         | 03 | 02       | 01        | 00   |
| Octal Bit            | 17           | 16     | 15    | 14      | 13      | 12      | 11       | 10   | 07         | 06               | 05        | 04         | 03 | 02       | 01        | 00   |
| Write Word 0         |              |        | 8-B   | it Cali | bration | n Mask  |          |      | Cal<br>Clk | Cal hi<br>Cal lo | F         | ilter Cuto | ff | FDF      | Data      | Туре |
| 1                    | Therr        | nocou  | ple 3 | Гуре    | Th      | ermocou | ıple 2 T | ype  | T          | hermoco          | uple 1 Ty | уре        | Th | ermocoup | ple 0 Typ | e    |
| 2                    | Therr        | nocou  | ple 7 | Гуре    | Th      | ermocou | ıple 6 T | ype  | Т          | hermoco          | uple 5 Ty | уре        | Th | ermocoup | ple 4 Typ | е    |
| Where: FDF = fixed ( | digital filt | er bit |       |         |         |         |          |      |            |                  |           |            |    |          |           |      |

Figure 6-32. 1794-IT8 Module Output Memory Map

| Word         | Decimal Bit<br>(Octal Bit) |                    |           |          |          | Description                                                                                                                                        |
|--------------|----------------------------|--------------------|-----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Write Word 0 | 00-01 (00-01)              | Modul              | e Data T  | уре      |          |                                                                                                                                                    |
|              |                            | Bit                | 01        | 00       | Definit  | ion                                                                                                                                                |
|              |                            |                    | 0         | 0        | °C (de   | fault)                                                                                                                                             |
|              |                            |                    | 0         | 1        | ٩F       |                                                                                                                                                    |
|              |                            |                    | 1         | 0        | Bipolar  | counts scaled between -32768 and +32767                                                                                                            |
|              |                            |                    | 1         | 1        | Unipol   | ar counts scaled between 0 and 65535                                                                                                               |
|              | Bit 02 (02)                | 100%               | of a Full |          | ep input | s bit is set (1), a software digital filter is enabled. This filter settles to in 60 times the selected first notch filter time shown on page 4–3. |
|              | 03-05 (03-05)              | A/D Fi             | lter Firs | t Notch  | Frequer  | ncy                                                                                                                                                |
|              |                            | Bit                | 05        | 04       | 03       | Definition                                                                                                                                         |
|              |                            |                    | 0         | 0        | 0        | 10Hz (default)                                                                                                                                     |
|              |                            |                    | 0         | 0        | 1        | 25Hz                                                                                                                                               |
|              |                            |                    | 0         | 1        | 0        | 50Hz                                                                                                                                               |
|              |                            |                    | 0         | 1        | 1        | 60Hz                                                                                                                                               |
|              |                            |                    | 1         | 0        | 0        | 100Hz                                                                                                                                              |
|              |                            |                    | 1         | 0        | 1        | 250Hz                                                                                                                                              |
|              |                            |                    | 1         | 1        | 0        | 500Hz                                                                                                                                              |
|              |                            |                    | 1         | 1        | 1        | 1000hZ                                                                                                                                             |
|              | 06 (06)                    | Calibra            | tion Hig  | h/Low bi | t - This | bit is set during gain calibration; reset during offset calibration.                                                                               |
|              | 07 (07)                    | Calibra<br>calibra |           | k - this | bit must | be set to 1 to prepare for a calibration cycle; then reset to 0 to initiate                                                                        |
|              | 08-15 (10-17)              |                    |           |          |          | I, or channels, to be calibrated will have the correct mask bit set. Bit 8 to channel 1, and so on.                                                |

Figure 6-33. 1794-IT8 Write Word 0

#### **Hardware First Notch Filter**

| A/D Filter First Notch<br>Frequency<br>(effective resolution) | 10Hz<br>(16-bits)  | 25Hz<br>(16-bits) | 50Hz<br>(16-bits) | 60Hz<br>(16-bits) | 100Hz<br>(16-bits) | 250Hz<br>(13-bits) | 500Hz<br>(11-bits) | 1000Hz<br>(9-bits) |
|---------------------------------------------------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| Number of channels scanned                                    |                    |                   | Sys               | tem Throughp      | out (in ms an      | d s)               |                    |                    |
| 1                                                             | 325                | 145               | 85                | 75                | 55                 | 37                 | 31                 | 28                 |
| 2                                                             | 650                | 290               | 170               | 150               | 110                | 74                 | 62                 | 56                 |
| 3                                                             | 975                | 435               | 255               | 225               | 165                | 111                | 93                 | 84                 |
| 4                                                             | 1.3s               | 580               | 340               | 300               | 220                | 148                | 124                | 112                |
| 5                                                             | 1.625s             | 725               | 425               | 375               | 275                | 185                | 155                | 140                |
| 6                                                             | 1.95s              | 870               | 510               | 450               | 330                | 222                | 186                | 168                |
| 7                                                             | 2.275s             | 1.015s            | 595               | 525               | 385                | 259                | 217                | 196                |
| 8                                                             | 2.60s <sup>1</sup> | 1.16s             | 680               | 600               | 440                | 296                | 248                | 224                |

Figure 6-34. 1794-IT8 Hardware First Notch Filter

| Word         | Decimal Bit<br>(Octal Bit) |       |          |         |         |          | Description                                                 |
|--------------|----------------------------|-------|----------|---------|---------|----------|-------------------------------------------------------------|
| Write Word 2 | 00-03 (00-03)              | Chann | el 0 The | rmocoup | le Type |          |                                                             |
|              |                            | Bit   | 03       | 02      | 01      | 00       | Thermocouple Type - Range                                   |
|              |                            |       | 0        | 0       | 0       | 0        | Millivolts (default)                                        |
|              |                            |       | 0        | 0       | 0       | 1        | B 300 to 1800°C (572 to 3272°F)                             |
|              |                            |       | 0        | 0       | 1       | 0        | E -270 to 1000°C (-454 to 1832°F)                           |
|              |                            |       | 0        | 0       | 1       | 1        | J -210 to 1200°C (-346 to 2192°F)                           |
|              |                            |       | 0        | 1       | 0       | 0        | K -71 to 1372°C (-95 to 2502°F)                             |
|              |                            |       | 0        | 1       | 0       | 1        | R -50 to 1768°C (-58 to 3214°F)                             |
|              |                            |       | 0        | 1       | 1       | 0        | S -50 to 1768°C (-58 to 3214°F)                             |
|              |                            |       | 0        | 1       | 1       | 1        | T -73 to 400°C (-99 to 752°F)                               |
|              |                            |       | 1        | 0       | 0       | 0        | C 0 to 2315°C (32 to 4199°F)                                |
|              |                            |       | 1        | 0       | 0       | 1        | N -270 to 1300°C (-450 to 2372°F)                           |
|              |                            |       | 1        | 0       | 1       | 0        | Reserved                                                    |
|              |                            |       | 1        | 0       | 1       | 1        | Reserved                                                    |
|              |                            |       | 1        | 1       | 0       | 0        | Module reports cold junction temperature for channels 00-03 |
|              |                            |       | 1        | 1       | 0       | 1        | Module reports cold junction temperature for channels 04-07 |
|              |                            |       | 1        | 1       | 1       | 0        | Reserved                                                    |
|              |                            |       | 1        | 1       | 1       | 1        | No sensor connected (do not scan)                           |
|              | 04-07 (04-07)              | Chann | el 1 The | mocoup  | le Type | (see bit | ts 00-03)                                                   |
|              | 08-11 (10-13)              | Chann | el 2 The | mocoup  | le Type | (see bit | ts 00-03)                                                   |
|              | 12-15 (14-17)              | Chann | el 3 The | rmocoup | le Type | (see bit | ts 00-03)                                                   |
| Write Word 3 | 00-03 (00-03)              | Chann | el 4 The | rmocoup | le Type | (see wr  | ite word 2, bits 00-03)                                     |
|              | 04-07 (04-07)              | Chann | el 5 The | rmocoup | le Type | (see wr  | ite word 2, bits 00-03)                                     |
|              | 08-11 (10-13)              | Chann | el 6 The | rmocoup | le Type | (see wr  | ite word 2, bits 00-03)                                     |
|              | 12-15 (14-17)              | Chann | el 7 The | rmocoup | le Type | (see wr  | ite word 2, bits 00-03)                                     |

Figure 6-35. 1794-IT8 Write Word 1 and 2 (Note: Write Words 2 & 3 should be labeled 1 & 2)

In this example, the first read block is set up to monitor the all of the under and overrange bits on the module. The second read block monitors the Cold Junction sensor underrange bit, Cold Junction sensor overrange bit, Bad Structure, Powerup bit, Critical Error bits, Calibration Range bit, Calibration Done bit, and Calibration Bad bit. The first write word(1) sets the module for °F units, 100 Hz filtering, and no calibration. The second write word(2) sets the module for type K thermocouples on channels 0, 1, 2, and 3. The third write word(3) sets the module for type K thermocouples for channels 4 and 5, cold junction (0-3) temperature on channel 6, and cold junction (4-7) on channel 7. See Figure 6-36 for GAP read and write block example.

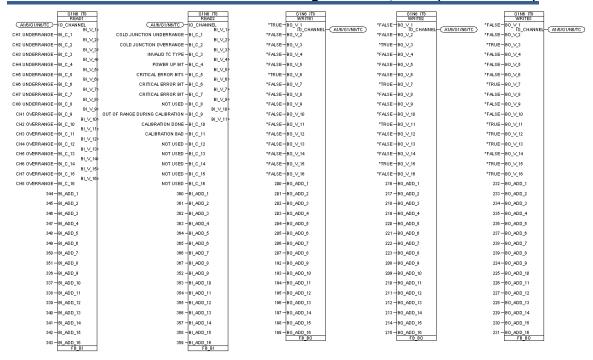



Figure 6-36. Example of 1794-IT8 Read and Write GAP Blocks

To read the analog input words for the 1794-IT8 module, individual FB\_Al blocks were used. Again, the addressing for the analog input blocks need to be in bytes. To convert from spreadsheet bit addresses to bytes, take the first bit of the word in the spreadsheet for the 1794-IT8 module and divide by 8 bits/byte (208÷8=26). Repeat this calculation for the rest of the addresses for each channel. In order to read the output from the 1794-IT8 module correctly, the FB\_Al block must be scaled appropriately. According to the 1794-IT8 manual, the Al\_RL\_1 (Minimum Temp) and Al\_RH\_1 (Maximum Temp) must be scaled to ten times the Al\_BL\_1 (Scale Low) and Al\_BH\_1 (Scale High) values. Do not use the –95 to 2502 °F range indicated in Figure 6-35, 1794-IT8 Write Word 1 and 2, above, because it is in error. Use Figure 6-37 1794-IT8 Input Scaling, below, for type K thermocouple range of –454 to 2502 °F.

# **Input Scaling**

| Input Type | Range              | Scaling        | Maximum<br>Resolution |  |  |
|------------|--------------------|----------------|-----------------------|--|--|
| Millivolt  | -76.50 to +76.50mV | -7650 to +7650 | 10μV                  |  |  |
| Type B     | 300 to 1800°C      | 3000 to 18000  | 0.1°C                 |  |  |
| Type E     | -270 to 1000°C     | 2700 to 10000  | 0.1°C                 |  |  |
| Type J     | -210 to 1200°C     | -2100 to 12000 | 0.1°C                 |  |  |
| Type K     | -270 to 1372°C     | -2700 to 13720 | 0.1°C                 |  |  |
| Type R     | -50 to 1768°C      | -500 to 17680  | 0.1°C                 |  |  |
| Type S     | -50 to 1768°C      | -500 to 17680  | 0.1°C                 |  |  |
| Type T     | -270 to 400°C      | -2700 to 4000  | 0.1°C                 |  |  |
| Type N     | -270 to 1300°C     | -2700 to 13000 | 0.1°C                 |  |  |
| Type C     | 0 to 2315°C        | 0 to 23150     | 0.1°C                 |  |  |
| Туре В     | 572 to 3272°F      | 5720 to 32720  | 0.1ºF                 |  |  |
| Type E     | -454 to 1832°F     | -4540 to 18320 | 0.1ºF                 |  |  |
| Type J     | -346 to 2192°F     | -3460 to 21920 | 0.1°F                 |  |  |
| Type K     | -454 to 2502°F     | -4540 to 25020 | 0.1°F                 |  |  |
| Type R     | -58 to 3214°F      | -580 to 32140  | 0.1ºF                 |  |  |
| Type S     | -58 to 3214°F      | -580 to 32140  | 0.1ºF                 |  |  |
| Type T     | -454 to 752°F      | -4540 to 7520  | 0.1°F                 |  |  |
| Type N     | -450 to 2372°F     | -4500 to 23720 | 0.1°F                 |  |  |
| Type C     | 32 to 4199°F       | 320 to 41990   | 0.1ºF                 |  |  |

**Note:** In thermocouple mode, scaled number has an implied decimal point 1 digit from the right. For example, if reading is 18000, temperature is 1800.0. In millivolt mode, the implied decimal point is to the left of the last 2 digits. For example, if reading is 2250, actual reading is 22.50mV

Figure 6-37. 1794-IT8 Input Scaling

Again, from the 1794-IT8 manual, the range of the cold junction (reference junction) sensor is 0-70 °C. This converts to 32 to 158 °F. It has been found that the Al\_RL\_1 and Al\_RH\_1 must be scaled to one hundred times the Al\_BL\_1 and Al\_BH\_1 values. See Figure 6-38 for example of 1794-IT8 GAP Analog Read Blocks.

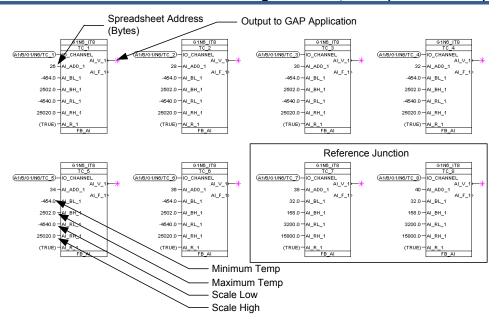
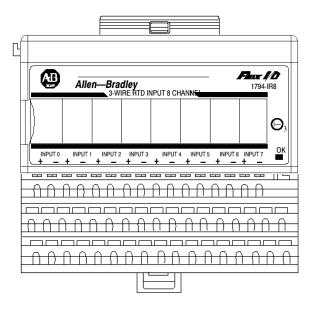




Figure 6-38. Example of 1794-IT8 GAP Analog Read Blocks

## Allen-Bradley RTD Input (1794-IR8) Module



See Figure 6-39 for example of 1794-IR8 module wiring.

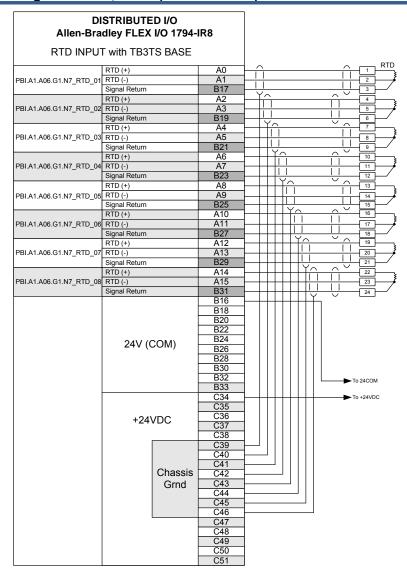



Figure 6-39. Example of 1794-IR8 Module Wiring

The memory map indicates that there are eleven read addresses and 3 write address. The condensed format used to set up the address spreadsheet specifies eleven read addresses and 3 write addresses also. See Figure 6-40 for the input memory map and Figures 6-41 through 6-44 for the output memory map for the 1794-IR8 module.

| RTD Analo   | og Inj | g Input Module (1794-IR8) Read Words |    |       |        |            |             |              |         |     |                   |       |           |          |    |    |
|-------------|--------|--------------------------------------|----|-------|--------|------------|-------------|--------------|---------|-----|-------------------|-------|-----------|----------|----|----|
| Decimal Bit | 15     | 14                                   | 13 | 12    | 11     | 10         | 09          | 08           | 07      | 06  | 05                | 04    | 03        | 02       | 01 | 00 |
| Octal Bit   | 17     | 16                                   | 15 | 14    | 13     | 12         | 11          | 10           | 07      | 06  | 05                | 04    | 03        | 02       | 01 | 00 |
| Word 0      |        | Reserved                             |    |       |        |            |             |              |         |     |                   |       |           |          |    |    |
| 1           |        |                                      |    |       |        |            | Cl          | hannel 0 I   | nput Da | ata |                   |       |           |          |    |    |
| 2           |        | Channel 1 Input Data                 |    |       |        |            |             |              |         |     |                   |       |           |          |    |    |
| 3           |        | Channel 2 Input Data                 |    |       |        |            |             |              |         |     |                   |       |           |          |    |    |
| 4           |        | Channel 3 Input Data                 |    |       |        |            |             |              |         |     |                   |       |           |          |    |    |
| 5           |        |                                      |    |       |        |            | CI          | hannel 4 I   | nput Da | ata |                   |       |           |          |    |    |
| 6           |        |                                      |    |       |        |            | C           | hannel 5 I   | nput Da | ata |                   |       |           |          |    |    |
| 7           |        |                                      |    |       |        |            | CI          | hannel 6 I   | nput Da | ata |                   |       |           |          |    |    |
| 8           |        |                                      |    |       |        |            | C           | hannel 7 I   | nput Da | ata |                   |       |           |          |    |    |
| 9           |        |                                      |    | Overr | ange B | lits       |             |              |         |     |                   | Under | range B   | iits     |    |    |
| 10          | 0      | 0                                    | 0  | 0     | 0      | Bad<br>Cal | Cal<br>Done | Cal<br>Range | 0       |     | agnost<br>atus Bi |       | Pwr<br>Up | Reserved | 0  | 0  |

Figure 6-40. 1794-IR8 Module Input Memory Map

**Underrange bits**—These bits are set if the input signal is below the input channel's minimum range.

**Overrange bits**—These bits are set if 1), the input signal is above the input channel's maximum range, or 2), an open detector is detected.

**Powerup bit**—This bit is set (1) until configuration data is received by the module.

**Critical Error bits**—If these bits are anything other than all zeroes, return the module to the factory for repair.

Calibration Range bit—Set to 1 if a reference signal is out of range during calibration

**Calibration Done bit**—Set to 1 after an initiated calibration cycle is complete. **Calibration Bad bit**—Set to 1 if the channel has not had a valid calibration.

| Decimal Bit | 15                                  | 15 14 13 12 11 10 09 08 |      |  |  |     |            | 07 | 06         | 05               | 04            | 03         | 02 | 01  | 00 |    |
|-------------|-------------------------------------|-------------------------|------|--|--|-----|------------|----|------------|------------------|---------------|------------|----|-----|----|----|
| Octal Bit   | 17 16 15 14 13 12 11 10 07 06 05 04 |                         |      |  |  |     |            | 04 | 03         | 02               | 01            | 00         |    |     |    |    |
| Word 0      |                                     | 8-bit Calibration Mask  |      |  |  |     |            |    | Cal<br>Clk | Cal Hi<br>Cal Lo | Filter Cutoff |            |    | Enh | MI | TC |
| 1           |                                     | RTD 3                   | Туре |  |  | RTD | 2 Type     |    | RTD 1 Type |                  |               | RTD 0 Type |    |     |    |    |
| 2           | RTD 7 Type RTD 6 Type               |                         |      |  |  |     | RTD 5 Type |    |            |                  | RTD 4 Type    |            |    |     |    |    |

Figure 6-41. 1794-IR8 Module Output Memory Map

| Word         | Dec. Bits<br>(Octal Bits) |         | Description                                                                                                                                                                                                     |                                              |                                                   |                                                                                                         |  |  |  |  |
|--------------|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|
| Write word 0 | 00-01                     | Modul   | e Data T                                                                                                                                                                                                        | уре                                          |                                                   |                                                                                                         |  |  |  |  |
|              |                           | Bit     | 01                                                                                                                                                                                                              | 00                                           |                                                   |                                                                                                         |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 0 °C (default)                               |                                                   |                                                                                                         |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 0 1 °F                                       |                                                   |                                                                                                         |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 0                                            | 0 Bipolar counts scaled between -32768 and +32767 |                                                                                                         |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 1 Unipolar counts scaled between 0 and 65535 |                                                   |                                                                                                         |  |  |  |  |
|              | 02                        | compa   | nhanced mode select - measures voltage drop across a precision resistor in the module<br>impare with the unknown input. This improves module temperature drift characteristics, but<br>duces module throughput. |                                              |                                                   |                                                                                                         |  |  |  |  |
|              | 03-05                     | A/D Fil | /D Filter First Notch Frequency                                                                                                                                                                                 |                                              |                                                   |                                                                                                         |  |  |  |  |
|              |                           | Bit     | 05                                                                                                                                                                                                              | 04                                           | 03                                                | Definition                                                                                              |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 0                                            | 0                                                 | 10Hz (default)                                                                                          |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 0                                            | 1                                                 | 25Hz                                                                                                    |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 1                                            | 0                                                 | 50Hz                                                                                                    |  |  |  |  |
|              |                           |         | 0                                                                                                                                                                                                               | 1                                            | 1                                                 | 60Hz                                                                                                    |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 0                                            | 0                                                 | 100Hz                                                                                                   |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 0                                            | 1                                                 | 250Hz                                                                                                   |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 1                                            | 0                                                 | 500Hz                                                                                                   |  |  |  |  |
|              |                           |         | 1                                                                                                                                                                                                               | 1                                            | 1                                                 | 1000Hz                                                                                                  |  |  |  |  |
|              | 06                        | Calibra | ation Hi                                                                                                                                                                                                        | gh/Low                                       | bit - Thi                                         | is bit is set during gain calibration; reset during offset calibration.                                 |  |  |  |  |
|              | 07                        |         | ation clo<br>calibrati                                                                                                                                                                                          |                                              | s bit mu:                                         | st be set to 1 to prepare for a calibration cycle; then reset to 0 to                                   |  |  |  |  |
|              | 08-15 (10-17)             |         |                                                                                                                                                                                                                 |                                              |                                                   | el, or channels, to be calibrated will have the correct mask bit set.<br>bit 9 to channel 1, and so on. |  |  |  |  |

Figure 6-42. 1794-IR8 Write Word 0

## **Hardware First Notch Filter**

| A/D Filter First Notch<br>Frequency<br>(effective resolution) | 10Hz<br>(16-bits)  | 25Hz<br>(16-bits) | 50Hz<br>(16-bits) | 60Hz<br>(16-bits) | 100Hz<br>(16-bits) | 250Hz<br>(13-bits) | 500Hz<br>(11-bits) | 1000Hz<br>(9-bits) |
|---------------------------------------------------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| Number of channels scanned                                    |                    |                   | Sys               | tem Throughp      | out (in ms an      | d s)               |                    |                    |
| 1                                                             | 325                | 145               | 85                | 75                | 55                 | 37                 | 31                 | 28                 |
| 2                                                             | 650                | 290               | 170               | 150               | 110                | 74                 | 62                 | 56                 |
| 3                                                             | 975                | 435               | 255               | 225               | 165                | 111                | 93                 | 84                 |
| 4                                                             | 1.3s               | 580               | 340               | 300               | 220                | 148                | 124                | 112                |
| 5                                                             | 1.625s             | 725               | 425               | 375               | 275                | 185                | 155                | 140                |
| 6                                                             | 1.95s              | 870               | 510               | 450               | 330                | 222                | 186                | 168                |
| 7                                                             | 2.275s             | 1.015s            | 595               | 525               | 385                | 259                | 217                | 196                |
| 8                                                             | 2.60s <sup>1</sup> | 1.16s             | 680               | 600               | 440                | 296                | 248                | 224                |

Figure 6-43. 1794-IT8 Hardware First Notch Filter

| Word         | Dec. Bits<br>(Octal Bits) |       |          |         |           |        | Description                                   |
|--------------|---------------------------|-------|----------|---------|-----------|--------|-----------------------------------------------|
| Write Word 1 | 00-03                     | Chann | el 0 RTD | Туре    |           |        |                                               |
|              |                           | Bit   | 03       | 02      | 01        | 00     | RTD Type - Range                              |
|              |                           |       | 0        | 0       | 0         | 0      | Resistance (default)                          |
|              |                           |       | 0        | 0       | 0         | 1      | No sensor connected - do not scan             |
|              |                           |       | 0        | 0       | 1         | 0      | 100 ohm Pt α = 0.00385 Euro (-200 to +870°C)  |
|              |                           |       | 0        | 0       | 1         | 1      | 100 ohm Pt α = 0.003916 U.S. (-200 to +630°C) |
|              |                           |       | 0        | 1       | 0         | 0      | 200 ohm Pt α = 0.00385 Euro (-200 to +630°C)  |
|              |                           |       | 0        | 1       | 0         | 1      | 500 ohm Pt α = 0.00385 Euro (-200 to +630°C)  |
|              |                           |       | 0        | 1       | 1         | 0      | Reserved                                      |
|              |                           |       | 0        | 1       | 1         | 1      | 10 ohm Copper (-200 to +260°C)                |
|              |                           |       | 1        | 0       | 0         | 0      | 120 ohm Nickel (-60 to +250°C)                |
|              |                           |       | 1        | 0       | 0         | 1      | 100 ohm Nickel (-60 to +250°C)                |
|              |                           |       | 1        | 0       | 1         | 0      | 200 ohm Nickel (-60 to +250°C)                |
|              |                           |       | 1        | 0       | 1         | 1      | 500 ohm Nickel (-60 to +250°C)                |
|              |                           |       | 1        | 1       | 0         | 0      | Reserved                                      |
|              |                           |       | 1101 to  | 1111 -  | Reserve   | ed     |                                               |
|              | 04-07                     | Chann | el 1 RTD | Type (  | see bits  | 00-03) |                                               |
|              | 08-11                     | Chann | el 2 RTD | Type (: | see bits  | 00-03) |                                               |
|              | 12-15                     | Chann | el 3 RTD | Type (: | see bits  | 00-03) |                                               |
| Write Word 2 | 00-03                     | Chann | el 4 RTD | Type (  | see write | word ' | I, bits 00-03)                                |
|              | 04-07                     | Chann | el 5 RTD | Type (: | see write | word ' | I, bits 00-03)                                |
|              | 08-11                     | Chann | el 6 RTD | Type (  | see write | word ' | I, bits 00-03)                                |
|              | 12-15                     | Chann | el 7 RTD | Type (  | see write | word . | I, bits 00-03)                                |

Figure 6-44. 1794-IT8 Write Word 1 and 2

In this example, the first read block is set up to monitor the all of the under and overrange bits on the module. The second read block monitors the Powerup bit, Critical Error bits, Calibration Range bit, Calibration Done bit, and Calibration Bad bit. The first write word(1) sets the module for °F units, 100 Hz filtering, and no calibration. The second write word(2) sets the module for 100 ohm Pt Euro RTD on channels 0, 1, 2, and 3. The third write word(3) sets the module for 100 ohm Pt Euro RTD for channels 4, 5, 6, and 7. See Figure 6-45 for GAP read and write block example.

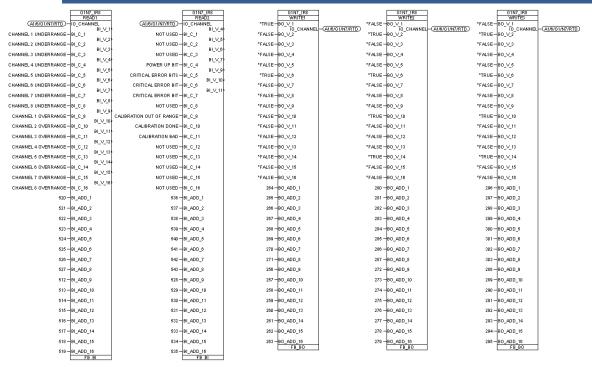



Figure 6-45. Example of 1794-IR8 Read and Write GAP Blocks

To read the analog input words for the 1794-IR8 module, individual FB\_Al blocks were used. Again, the addressing for the analog input blocks needs to be in bytes. In order to read the output from the 1794-IR8 module correctly, the FB\_Al block must be scaled appropriately. According to the 1794-IR8 manual, the Al\_RL\_1 (Minimum Temp) and Al\_RH\_1 (Maximum Temp) must be scaled to ten times the Al\_BL\_1 (Scale Low) and Al\_BH\_1 (Scale High) values. From the 1794-IR8 Input Scaling, it can be seen that the 100 ohm Pt Euro RTD range is – 328 to 1598 °F. See Figure 6-46 for Input scaling for RTDs.

## Input Scaling

| Range           | Degrees         | Counts          | Maximum<br>Resolution |
|-----------------|-----------------|-----------------|-----------------------|
| 100 ohm Pt Euro | -328 to +1598°F | -3280 to +15980 | 0.1ºF                 |
| 100 ohm Pt U.S  | -328 to +1166°F | -3280 to +11660 | 0.1ºF                 |
| 200 ohm Pt Euro | -328 to +1166°F | -3280 to +11660 | 0.1ºF                 |
| 500 ohm Pt Euro | -328 to +1166°F | -3280 to +11660 | 0.1ºF                 |
| 100 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1ºF                 |
| 120 ohm Nickel  | -112 to +500°F  | -1120 to +5000  | 0.1°F                 |
| 200 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1°F                 |
| 500 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1°F                 |
| 10 ohm Copper   | -328 to +500°F  | -3280 to +5000  | 0.1°F                 |

Note: Temperature data has an implied decimal point 1 space to the right of the last digit. (divide by 10). For example, a readout of 1779° would actually be 177.9°.

Figure 6-46.1794-IR8 Input Scaling

See Figure 6-47 for example of 1794-IR8 GAP Analog Read Blocks.

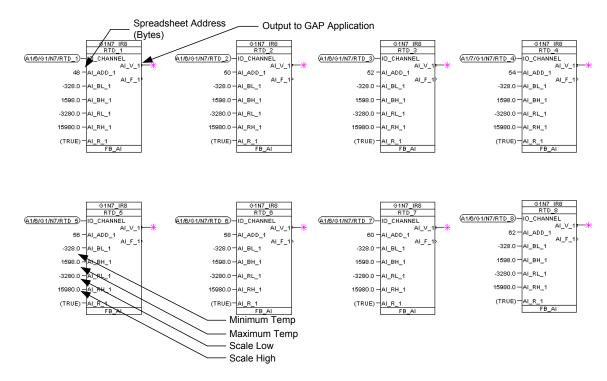



Figure 6-47. Example of 1794-IR8 GAP Analog Read Blocks

# Allen-Bradley Flex I/O Modbus Configuration

MODBUS is an application layer messaging protocol, at level 7, as defined in the OSI (Open System Interconnection) model. It provides client/server communication between devices connected on different types of buses or networks. It is a request/reply protocol and offers services specified by function codes. MODBUS function codes are elements of MODBUS request/reply PDUs (Protocol Data Unit).

Modicon developed the Modbus addressing scheme around the data table and I/O structure in Modicon PLCs. Allen-Bradley Flex I/O is a modular system which combines the functions of terminal blocks and I/O modules for distributed I/O. Each Flex I/O system has the following components: a Base Controller and one or more I/O Module(s). Flex I/O systems can contain up to 8 I/O modules per slave (node). An external +24 Vdc power supply is required.

In this example, one 3170-MBS MODBUS adapter from ProSoft Technology, Inc. is interfaced with seven terminal base units with installed FLEX I/O modules, forming a FLEX I/O system.

The 3170-MBS is a Network Interface Adapter that communicates between the FLEX I/O module backplane and AtlasPC/Master across a serial RS-485 connection. The 3170-MBS module is a slave device to the AtlasPC control, and is a master controller of the FLEX I/O modules. The I/O data exchange occurs as follows: Output data is sent from the AtlasPC control across the RS-485 connection to the 3170-MBS adapter. The network interface adapter then automatically transfers the data across the FLEX I/O backplane to the output modules. Inputs from the input modules are collected by the network interface adapter via the backplane and sent across the RS-485 connection to the AtlasPC control.

The most common data space used is the 4xxxx space using the Function Codes 3, 6 and 16. This space is used to transfer 16 bit register values and can be used to transfer bit mapped data. In this example of the Allen-Bradley configuration, only the 4xxxx address space is used, which results in all discrete communications being done in analog words.

Each Flex module has 60 words of address space (30 Input or Read addresses and 30 Output or Write addresses). Data can be mapped in two directions, horizontal or vertical. There are 15 Horizontal and 15 Vertical addresses assigned per module. With horizontal addressing, the adapter addresses the first input and output word for each module incrementally across the modules. 40001 for module 0, 40002 for module 1 and so on. Vertical addressing increments all the words for each module. For example, the vertical read words for slot 0 start with 41001 and increment to 41015.

In order to simplify the nomenclature used in creating the GAP application, certain naming conventions were changed with respect to the manufacturer's naming convention. In this example, Woodward refers to the node address as the Group address. The 3170-MBS Group address (Node address), is set by a dip switch located on the 3170-MBS module. In this example the address is set to 01.

Upon power–up, the 3170-PDP goes to an initialization state and performs a self–test (memory check, data memory clear. If a failure occurs, the interface adapter transitions to a faulted state and waits for reset (cycle power). Otherwise, the adapter begins monitoring the network (run state) for messages.

In this example, the power wiring is daisy—chained to the Network Interface adapter and then to the terminal bases. See Figure 6-48 for Allen-Bradley Flex I/O configuration layout.

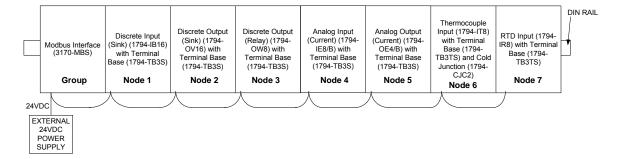



Figure 6-48. Allen-Bradley Flex I/O Configuration

#### **Address Spreadsheet**

The I/O map for a module is divided into read words and write words. Read words consist of input and status words, and write words consist of output and configuration words. The number of read words or write words can be 0 or more.

To keep track of the addressing for all of the reads and writes, the creation of an address spreadsheet is very useful. This address spreadsheet can be derived from the network interface module (head) 3170-MBS User Manual. The Allen-Bradley I/O modules can be addressed in two ways (Horizontal or Vertical). It has been found that vertical addressing works best with the sequential nature of the MODBUS\_M GAP block repeat field functionality. See Table 12.7.1.3-1 for address spread sheet for this example.

| Vertical                                                                                                         | Read Add                                                                     | resses                                                                                                 |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| IB16                                                                                                             | OV16                                                                         | OW8                                                                                                    | IE8/B                                                                                                    | OE4/B                                                                                                    | IT8                                                                                                      | IR8                                                                                                      | Empty Slot                                                                                               |
| 41001                                                                                                            | 41016                                                                        | 41031                                                                                                  | 41046                                                                                                    | 41061                                                                                                    | 41076                                                                                                    | 41091                                                                                                    | 41106                                                                                                    |
| 41002                                                                                                            | 41017                                                                        | 41032                                                                                                  | 41047                                                                                                    | 41062                                                                                                    | 41077                                                                                                    | 41092                                                                                                    | 41107                                                                                                    |
| 41003                                                                                                            | 41018                                                                        | 41033                                                                                                  | 41048                                                                                                    | 41063                                                                                                    | 41078                                                                                                    | 41093                                                                                                    | 41108                                                                                                    |
| 41004                                                                                                            | 41019                                                                        | 41034                                                                                                  | 41049                                                                                                    | 41064                                                                                                    | 41079                                                                                                    | 41094                                                                                                    | 41109                                                                                                    |
| 41005                                                                                                            | 41020                                                                        | 41035                                                                                                  | 41050                                                                                                    | 41065                                                                                                    | 41080                                                                                                    | 41095                                                                                                    | 41110                                                                                                    |
| 41006                                                                                                            | 41021                                                                        | 41036                                                                                                  | 41051                                                                                                    | 41066                                                                                                    | 41081                                                                                                    | 41096                                                                                                    | 41111                                                                                                    |
| 41007                                                                                                            | 41022                                                                        | 41037                                                                                                  | 41052                                                                                                    | 41067                                                                                                    | 41082                                                                                                    | 41097                                                                                                    | 41112                                                                                                    |
| 41008                                                                                                            | 41023                                                                        | 41038                                                                                                  | 41053                                                                                                    | 41068                                                                                                    | 41083                                                                                                    | 41098                                                                                                    | 41113                                                                                                    |
| 41009                                                                                                            | 41024                                                                        | 41039                                                                                                  | 41054                                                                                                    | 41069                                                                                                    | 41084                                                                                                    | 41099                                                                                                    | 41114                                                                                                    |
| 41010                                                                                                            | 41025                                                                        | 41040                                                                                                  | 41055                                                                                                    | 41070                                                                                                    | 41085                                                                                                    | 41100                                                                                                    | 41115                                                                                                    |
| 41011                                                                                                            | 41026                                                                        | 41041                                                                                                  | 41056                                                                                                    | 41071                                                                                                    | 41086                                                                                                    | 41101                                                                                                    | 41116                                                                                                    |
| 41012                                                                                                            | 41027                                                                        | 41042                                                                                                  | 41057                                                                                                    | 41072                                                                                                    | 41087                                                                                                    | 41102                                                                                                    | 41117                                                                                                    |
| 41013                                                                                                            | 41028                                                                        | 41043                                                                                                  | 41058                                                                                                    | 41073                                                                                                    | 41088                                                                                                    | 41103                                                                                                    | 41118                                                                                                    |
| 41014                                                                                                            | 41029                                                                        | 41044                                                                                                  | 41059                                                                                                    | 41074                                                                                                    | 41089                                                                                                    | 41104                                                                                                    | 41119                                                                                                    |
| 41015                                                                                                            | 41030                                                                        | 41045                                                                                                  | 41060                                                                                                    | 41075                                                                                                    | 41090                                                                                                    | 41105                                                                                                    | 41120                                                                                                    |
|                                                                                                                  |                                                                              |                                                                                                        |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| Vertical                                                                                                         | Write Add                                                                    | resses                                                                                                 |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| IB16                                                                                                             | OV16                                                                         | OW8                                                                                                    | IE8/B                                                                                                    | OE4/B                                                                                                    | IT8                                                                                                      | IR8                                                                                                      | Empty Slot                                                                                               |
|                                                                                                                  |                                                                              |                                                                                                        | IE8/B<br>41246                                                                                           | <b>OE4/B</b> 41261                                                                                       | IT8<br>41276                                                                                             | IR8<br>41291                                                                                             | Empty Slot<br>41306                                                                                      |
| IB16                                                                                                             | OV16                                                                         | OW8                                                                                                    |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |                                                                                                          |
| <b>IB16</b><br>41201                                                                                             | OV16<br>41216                                                                | OW8<br>41231                                                                                           | 41246                                                                                                    | 41261                                                                                                    | 41276                                                                                                    | 41291                                                                                                    | 41306                                                                                                    |
| <b>IB16</b> 41201 41202                                                                                          | OV16<br>41216<br>41217                                                       | OW8<br>41231<br>41232                                                                                  | 41246<br>41247                                                                                           | 41261<br>41262                                                                                           | 41276<br>41277                                                                                           | 41291<br>41292                                                                                           | 41306<br>41307                                                                                           |
| IB16<br>41201<br>41202<br>41203                                                                                  | OV16<br>41216<br>41217<br>41218                                              | OW8<br>41231<br>41232<br>41233                                                                         | 41246<br>41247<br>41248                                                                                  | 41261<br>41262<br>41263                                                                                  | 41276<br>41277<br>41278                                                                                  | 41291<br>41292<br>41293                                                                                  | 41306<br>41307<br>41308                                                                                  |
| IB16<br>41201<br>41202<br>41203<br>41204                                                                         | OV16<br>41216<br>41217<br>41218<br>41219                                     | OW8<br>41231<br>41232<br>41233<br>41234                                                                | 41246<br>41247<br>41248<br>41249                                                                         | 41261<br>41262<br>41263<br>41264                                                                         | 41276<br>41277<br>41278<br>41279                                                                         | 41291<br>41292<br>41293<br>41294                                                                         | 41306<br>41307<br>41308<br>41309                                                                         |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205                                                                | OV16<br>41216<br>41217<br>41218<br>41219<br>41220                            | OW8<br>41231<br>41232<br>41233<br>41234<br>41235                                                       | 41246<br>41247<br>41248<br>41249<br>41250                                                                | 41261<br>41262<br>41263<br>41264<br>41265                                                                | 41276<br>41277<br>41278<br>41279<br>41280                                                                | 41291<br>41292<br>41293<br>41294<br>41295                                                                | 41306<br>41307<br>41308<br>41309<br>41310                                                                |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206                                                       | OV16<br>41216<br>41217<br>41218<br>41219<br>41220<br>41221                   | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236                                              | 41246<br>41247<br>41248<br>41249<br>41250<br>41251                                                       | 41261<br>41262<br>41263<br>41264<br>41265<br>41266                                                       | 41276<br>41277<br>41278<br>41279<br>41280<br>41281                                                       | 41291<br>41292<br>41293<br>41294<br>41295<br>41296                                                       | 41306<br>41307<br>41308<br>41309<br>41310<br>41311                                                       |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206<br>41207                                              | OV16<br>41216<br>41217<br>41218<br>41219<br>41220<br>41221<br>41222          | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236<br>41237                                     | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252                                              | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267                                              | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282                                              | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297                                              | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312                                              |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206<br>41207<br>41208                                     | OV16 41216 41217 41218 41219 41220 41221 41222 41223                         | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236<br>41237<br>41238                            | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252<br>41253                                     | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267<br>41268                                     | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282<br>41283                                     | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297<br>41298                                     | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312<br>41313                                     |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206<br>41207<br>41208<br>41209                            | OV16 41216 41217 41218 41219 41220 41221 41222 41223 41224                   | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236<br>41237<br>41238<br>41239                   | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252<br>41253<br>41254                            | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267<br>41268<br>41269                            | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282<br>41283<br>41284                            | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297<br>41298<br>41299                            | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312<br>41313<br>41314                            |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206<br>41207<br>41208<br>41209<br>41210                   | OV16 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225             | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236<br>41237<br>41238<br>41239<br>41240          | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252<br>41253<br>41254<br>41255                   | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267<br>41268<br>41269<br>41270                   | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282<br>41283<br>41284<br>41285                   | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297<br>41298<br>41299<br>41300                   | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312<br>41313<br>41314<br>41315                   |
| HB16 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211                                           | OV16 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226       | OW8<br>41231<br>41232<br>41233<br>41234<br>41235<br>41236<br>41237<br>41238<br>41239<br>41240<br>41241 | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252<br>41253<br>41254<br>41255<br>41256          | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267<br>41268<br>41269<br>41270<br>41271          | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282<br>41283<br>41284<br>41285<br>41286          | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297<br>41298<br>41299<br>41300<br>41301          | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312<br>41313<br>41314<br>41315<br>41316          |
| HB16<br>41201<br>41202<br>41203<br>41204<br>41205<br>41206<br>41207<br>41208<br>41209<br>41210<br>41211<br>41212 | OV16 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 | OW8 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242                            | 41246<br>41247<br>41248<br>41249<br>41250<br>41251<br>41252<br>41253<br>41254<br>41255<br>41256<br>41257 | 41261<br>41262<br>41263<br>41264<br>41265<br>41266<br>41267<br>41268<br>41269<br>41270<br>41271<br>41272 | 41276<br>41277<br>41278<br>41279<br>41280<br>41281<br>41282<br>41283<br>41284<br>41285<br>41286<br>41287 | 41291<br>41292<br>41293<br>41294<br>41295<br>41296<br>41297<br>41298<br>41299<br>41300<br>41301<br>41302 | 41306<br>41307<br>41308<br>41309<br>41310<br>41311<br>41312<br>41313<br>41314<br>41315<br>41316<br>41317 |

Table 6-4. Modbus Word Address Spreadsheet

In order to assign a specific function to each address, review each module's memory map. These memory maps define which addresses are used within the Address Spreadsheet. Not all of the 15 vertical addresses assigned to each module are used. Only the number of addresses specified in the memory map for each module are used. The remaining addresses are undefined. Those addresses defined in the individual I/O module's memory maps are highlighted in Table 12.7.1.3-1 above.

Use the following documents from the manufacturer to obtain the Memory Maps and related information.

| Module                  | Document P/N         |
|-------------------------|----------------------|
| Discrete Input (Sink)   | 1794-5.4             |
| Discrete Output (Sink)  | 1794-5.29            |
| Discrete Output (Relay) | 1794-5.19            |
| Analog Input (Current)  | 1794-5.6             |
| Analog Output (Current) | 1794-5.5             |
| Thermocouple Input      | 1794-6.5.7           |
| RTD Input               | 1794-6.5.4           |
| Modbus Interface        | 3170-MBS USER MANUAL |

#### **Nomenclature**

When creating a new GAP application, it is important to establish a well organized block naming convention up front. Once done, it is easier to find specific functions and I/O within a large GAP application. Though not shown in this example, the Category and Block Names could follow similar nomenclature rules to those shown in Chapter 1 (Profibus).

## **GAP Application**

In order to communicate between the Atlas serial RS-485 port and the 3170-MBS, a MOD\_PORT and MODBUS\_M block must be defined in GAP. The MOD PORT block defines the serial communications baud rate, stop, parity, and type of interface (RS-232, 422, 485). The MODBUS M block defines the addressing for Modbus communications between the Atlas and the distributed I/O. Based on the Address Spreadsheet, this block can be customized to read and write to appropriate addresses. See Figure 6-49 for MODBUS M/MOD PORT setup example.

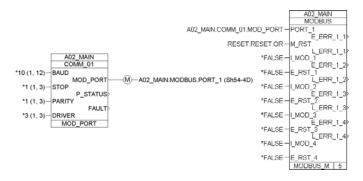



Figure 6-49. MODBUS\_M Block Example

The E\_ERR\_1\_x output field on the MODBUS\_M block is used to display Exception Error on PORT\_1 per RPTx. It latches TRUE when an exception error is detected. E\_NUM\_1\_X (hidden) displays the error number. See Table 12.7.1.3-3 for exception errors.

| CODE   | NAME                    | MEANING                                                                                                                                                    |
|--------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The fo | llowing are generat     | ted by the slave.                                                                                                                                          |
| 00     | NO ERROR                | Error free                                                                                                                                                 |
| 01     | ILLEGAL<br>FUNCTION     | Message function received is not an allowable action for addressed slave. (Unsupported or illegal function code).                                          |
| 02     | ILLEGAL DATA<br>ADDRESS | Address referenced in data field is not an allowable address for the addressed slave location. (Master requested data which is not configured from slave). |
| 03     | ILLEGAL DATA<br>VALUEA  | mount of data requested from slave was too large for slave to return in a single response.                                                                 |
| The fo | llowing are generat     | ted by the master.                                                                                                                                         |
| 09     | CHECKSUM<br>ERROR       | Error in checksum in message from slave. Can indicate link quality and/or noise problems.                                                                  |
| 10     | GARBLED<br>MESSAGE      | Data received from the slave, but is too short to be a valid Modbus message/response.                                                                      |
| 20     | UNSOLICITED<br>RESPONSE | Unsolicited message received from slave.                                                                                                                   |
| 21     | BAD FC IN<br>RESPONSE   | Slave returned a message with a different function code from the command sent.                                                                             |
| 22     | BAD ADD IN<br>RESPONSE  | Slave returned a message with a different address from the command sent.                                                                                   |
| 23     | NO SLAVE<br>RESPONSE    | No response from slave.                                                                                                                                    |
| 24     | MOE/CODER<br>ERROR      | MOE/CODER error.                                                                                                                                           |
| 25     | INTERNAL SYS<br>ERROR   | Internal system error.                                                                                                                                     |

Table 6-5. MODBUS\_M Exception Errors

The L\_ERR\_1\_x is used to display Link Error on PORT\_1 for RPTx. It goes TRUE when the slave fails to answer a data request. If a response isn't received in TIME\_OUT\_x seconds, the request is retried. If a response isn't received in TIME\_OUT\_x seconds after the request is retried, then this output is set true.

While waiting for a response from one slave, the master is not communicating with the other slaves. So, if multiple slaves fail at the same time (i.e. broken cable), the L\_ERR\_1\_x for the first slave attempted will occur at 2 x TIME\_OUT\_x. But, the second L\_ERR\_1\_x won't go true until 2 x TIME\_OUT\_x after the first failure because no communications are attempted with that slave until after the first has timed out.

The 3170-MBS RS-485 communications setup must be configured manually with two DIP switches located on the Adapter. These DIP switches must reflect the settings specified in the MOD\_PORT and MODBUS\_M blocks. The MOD\_PORT block defaults to 8 data bits per word. These setting were set as follows for this example:

Baud Rate 38400 Stop Bit 1 Parity Off Data Bits 8 Modbus Mode RTU Address 001

In order to limit the size of the MODBUS\_M address repeat groups, four repeat groups were set up. These groups consisted of:

```
Group 1 addresses 40121-40173 (Adapter Status Words)
Group 2 addresses 41001-41120 (Analog Read), 41201-41245 (Analog Write)
Group 3 addresses 41246-41290 (Analog Write)
Group 4 addresses 41291-41294 (Analog Write)
```

The analog writes were split into small groups with no more than 45 analog write addresses each. It was found that the Allen-Bradley adapter couldn't accept more than 45 write requests per group. If more than 45 analog write addresses are listed, the 3170-MBS will not communicate with the AtlasPC control. From the Address Spreadsheet, it can be seen that the Allen-Bradley modules require all read and write addresses be in the 40000 block of addresses. The AR\_F\_CODE field specifies the Analog Read Function Code for Modbus. By setting the AR\_F\_CODE field to 3, the MODBUS\_M block will access addresses 40001-4FFFF for reads. Address offsets are specified in the AR\_ADD\_X fields in order to limit the number of repeats within each address group. See Figure 6-50 for example of MODBUS\_M repeat fields.

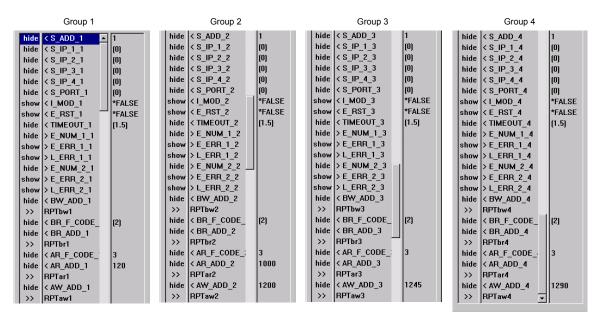



Figure 6-50. MODBUS M Block RPT Window Example

Within the MODBUS M RPT window, there are four repeats for each group (RPTbw1, RPTbr1, RPTar1, and RPTaw1). Each one of these RPT fields opens another window which displays the addresses assigned for that particular group. See specific module sections below for memory map function assignment. Example for Module 1 status bits (AR\_V\_1\_1): since group one uses AR F CODE = 3, the starting address is 40000. The AR ADD 1 offset is 120. Therefore the Module 1 status word (AR V 1 1) has an address of 40000 + 120 + 1 = 40121. All of the addresses specified in the Address Spreadsheet are mapped into MODBUS M block by applying this formula. See Figures 6-51, 6-52, 6-53, 6-54, and 6-55 for Groups 1, 2, 3, and 4 read/write address windows. Only those addresses specified in the Memory map/Address Spreadsheet are shown to abbreviate the figures. Group 1 doesn't contain any RPTbw1, RPTbr1, or RPTaw1 repeat fields because it is used for the Adapter Status Words. See Prosoft Modbus Interface (3170-MBS) Module section below for memory map functionality. Figure 6-51 shows the read addresses for Group 1 (40121-40173, Adapter Status Words).

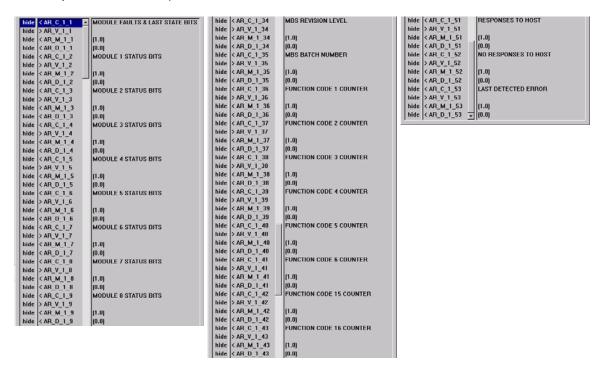



Figure 6-51. MODBUS M Block Group 1 Analog Read RPT Example

Figure 6-52 shows all of the used read addresses for Group 2 (41001-41120, Analog Read)

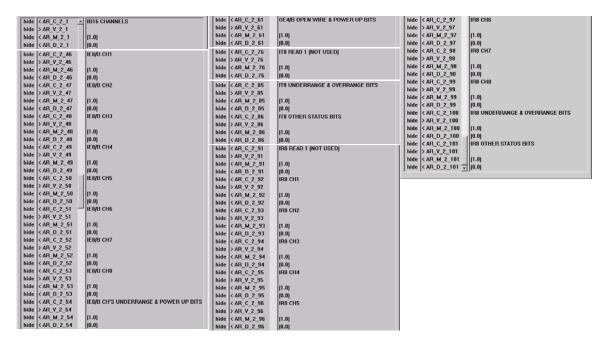



Figure 6-52. MODBUS\_M Block Group 2 Analog Read RPT Example

Figure 6-53 shows the used write addresses for Group 2 (41201-41245, Analog Write).




Figure 6-53. MODBUS M Block Group 2 Analog Write RPT Example

Figure 6-54 shows all of the used write addresses for Group 3 (41246-41290, Analog Write)



Figure 6-54. MODBUS\_M Block Group 3 Analog Write RPT Example

Figure 6-55 shows all of the used write addresses for Group 4 (41291-41294, Analog Write).

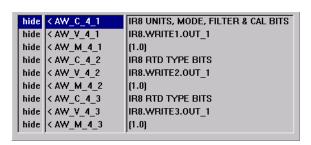
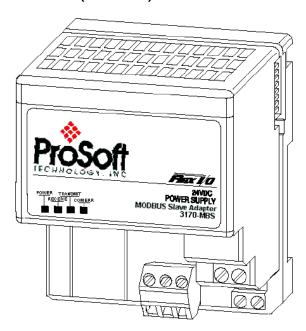




Figure 6-55. MODBUS\_M Block Group 4 Analog Write RPT Example

# ProSoft Modbus Interface (3170-MBS) Module



In addition to the individual I/O module read and write addresses, there are several status read addresses provided by the 3170-MBS Interface module. These status words can be used to monitor the condition of the I/O modules via the GAP application. See Figure 6-56 for 3170-MBS Status Information addresses from the 3170-MBS User Manual.

Adapter Status Word 40121

| Bit Description  | Bit    | Explanation                                                       |
|------------------|--------|-------------------------------------------------------------------|
|                  | 0      | This bit is set (1) when an error is detected in slot position 0. |
|                  | 1      | This bit is set (1) when an error is detected in slot position 1. |
|                  | 2      | This bit is set (1) when an error is detected in slot position 2. |
| I/O Module Fault | 3      | This bit is set (1) when an error is detected in slot position 3. |
|                  | 4      | This bit is set (1) when an error is detected in slot position 4. |
|                  | 5      | This bit is set (1) when an error is detected in slot position 5. |
|                  | 6      | This bit is set (1) when an error is detected in slot position 6. |
|                  | 7      | This bit is set (1) when an error is detected in slot position 7. |
| I/O Last State   | 8      | = 1 for hold last state = 0 for off                               |
|                  |        |                                                                   |
|                  | 9 - 15 | Not used set to 0                                                 |

|      | Module Status Words Address 40122 to 40129 |    |    |             |            |    |   |   |               |   |   |   |   |   |   |   |
|------|--------------------------------------------|----|----|-------------|------------|----|---|---|---------------|---|---|---|---|---|---|---|
| Bit: | 15                                         | 14 | 13 | 12          | 11         | 10 | 9 | 8 | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|      | Status                                     |    |    | Total Words | Read Words |    |   |   | Type Identity |   |   |   |   |   |   |   |

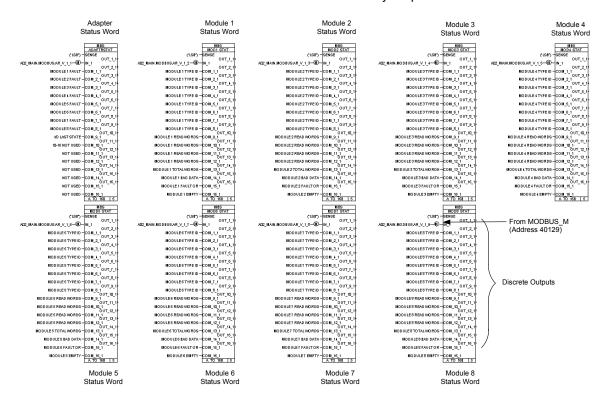
40173

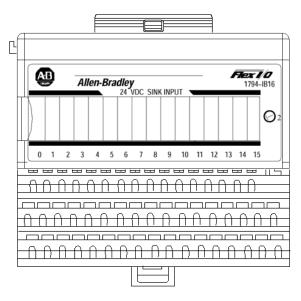
| Module Information                 |         |  |  |  |  |  |  |
|------------------------------------|---------|--|--|--|--|--|--|
| 3170-MBS Information               | Address |  |  |  |  |  |  |
| 3170-MBS Product Revision Level    | 40154   |  |  |  |  |  |  |
| 3170-MBS Product Batch Number      | 40155   |  |  |  |  |  |  |
| Modbus Function Counters           |         |  |  |  |  |  |  |
| Modbus Port Function Code Counter  | Address |  |  |  |  |  |  |
| Function Code 1                    | 40156   |  |  |  |  |  |  |
| Function Code 2                    | 40157   |  |  |  |  |  |  |
| Function Code 3                    | 40158   |  |  |  |  |  |  |
| Function Code 4                    | 40159   |  |  |  |  |  |  |
| Function Code 5                    | 40160   |  |  |  |  |  |  |
| Function Code 6                    | 40161   |  |  |  |  |  |  |
| Function Code 15                   | 40162   |  |  |  |  |  |  |
| Function Code 16                   | 40163   |  |  |  |  |  |  |
| Modbus                             |         |  |  |  |  |  |  |
| Modbus Status                      | Address |  |  |  |  |  |  |
| Modbus Port - Responses to Host    | 40171   |  |  |  |  |  |  |
| Modbus Port - No Responses to Host | 40172   |  |  |  |  |  |  |

Figure 6-56. 3170-MBS Status Information Addresses

Modbus Port - Last Detected Error Condition

Addresses 40121 to 40129 are all status words that represent 16 individual Boolean output conditions. For the GAP application to read the individual bits associated with the 16 bit words in the status addresses above, an A\_TO\_16B GAP Block is used. These blocks convert the 16 bit word from the addresses in the MODBUS\_M group 1 entries to individual Boolean states that can be used by the GAP application. See Figure 6-57 for example of setup of the discrete Status Word GAP blocks used to read the 3170-MBS memory map.





Figure 6-57. Example of 3170-MBS Memory Map Discrete Read GAP Blocks

The remaining Adapter status words (40154 – 40163 and 40171 – 40173) are all 16 bit words and can be handled by the GAP application as an analog values. An A\_NAME block is used to connect the specific status function with the addresses entered in the MODBUS\_M block. See Figure 6-58 for an example of the 3170-MBS Status Word monitoring.



Figure 6-58. Example of 3170-MBS Memory Map Analog Read GAP Blocks

## Allen-Bradley 24 Vdc Sink Input (1794-IB16) Module



In this example, the 1794-IB16 module is plugged into a 1794-TB3S base. See Figure 6-59 for example of 1794-IB16 module wiring.

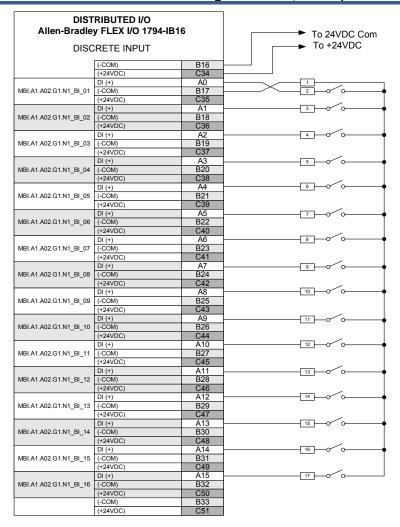



Figure 6-59. Example of 1794-IB16 Module Wiring

The 1794-IB16 memory map indicates that there are two read addresses and one write address. See Figure 6-60 for memory map of Allen-Bradley 1794-IB16 Discrete input module.

#### Memory Map

| Dec.   | 15      | 14      | 13      | 12      | 11      | 10      | 09     | 08     | 07     | 06     | 05     | 04     | 03     | 02     | 01     | 00     |
|--------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Read 0 | D<br>15 | D<br>14 | D<br>13 | D<br>12 | D<br>11 | D<br>10 | D<br>9 | D<br>8 | D<br>7 | D<br>6 | D<br>5 | D<br>4 | D<br>3 | D<br>2 | D<br>1 | D<br>0 |
| Read 1 |         |         |         |         | C =     | 16 bit  | Cou    | nter V | alue   | of Inp | out 15 | 5      |        |        |        |        |
| Write  | N<br>us |         | CF      | CR      |         |         | Not ı  | sed    |        |        | FI     | 12–    | 15     | FT     | 00-    | 11     |

Where: D = Data Input - 0 = input off, 1 = input on

- C = Counter value for input 15
- FT = Input Filter Time
- CR = Counter Reset
- CF = Counter Fast where 1 = Fast Input (raw) data, 0 = Standard Input filtered data
- NOTE: C, CR and CF not available when used with any series 1794-ASB or 1794-ASB2 Remote I/O Adapter Modules

Figure 6-60. 1794-IB16 Memory Map

In this example, this module was set up with filter times of 256us for all inputs, Counter Reset set to off, and Counter set to standard input filtered data. See Figure 6-61 for input filter time bit map.

## **Input Filter Times**

|    | Bits |    | Description                         |                      |
|----|------|----|-------------------------------------|----------------------|
| 02 | 01   | 00 | Filter Time for Inputs 00–11(00–13) | Selected Filter Time |
| 05 | 04   | 03 | Filter Time for Inputs 12–15(14–17) | - Tiller Tillie      |
| 0  | 0    | 0  | Filter Time 0 (default)             | 256µs                |
| 0  | 0    | 1  | Filter Time 1                       | 512µs                |
| 0  | 1    | 0  | Filter Time 2                       | 1ms                  |
| 0  | 1    | 1  | Filter Time 3                       | 2ms                  |
| 1  | 0    | 0  | Filter Time 4                       | 4ms                  |
| 1  | 0    | 1  | Filter Time 5                       | 8ms                  |
| 1  | 1    | 0  | Filter Time 6                       | 16ms                 |
| 1  | 1    | 1  | Filter Time 7                       | 32ms                 |

Figure 6-61. 1794-IB16 Input Filter Time Bit Map

In this example only one read address (41001) is monitored. Again, an A\_TO\_16B block is used to convert the word to 16 individual discrete input states. The memory map for this module requires discrete bits to be set for the filter times and counter functions in the write address. This is done by using an B16\_TO\_A block to write to the 1794-IB16 write address 41201. See Figure 6-62 for example of 1794-IB16 Read and Write GAP blocks

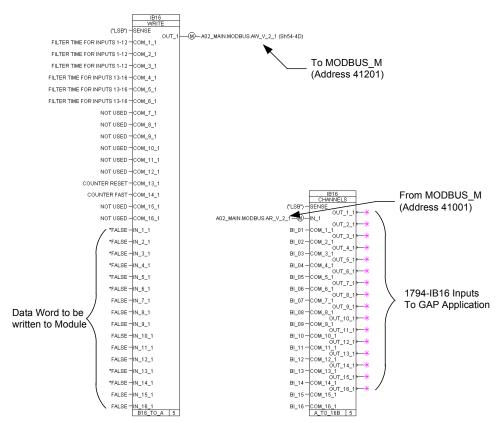
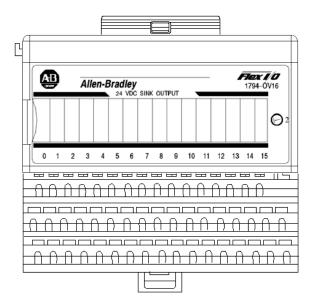




Figure 6-62. Example of 1794-IB16 Read and Write GAP Blocks

#### Allen-Bradley 24 Vdc Sink Output (1794-OV16) Module



In this example, the 1794-OV16 is connected to a Woodward 16 channel relay module. See Figure 6-63 for example of 1794-OV16 module wiring.

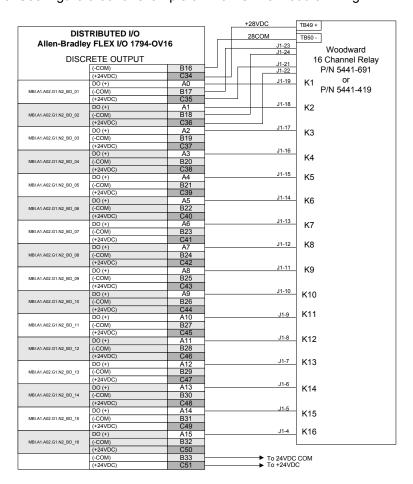



Figure 6-63. Example of 1794-OV16 Module Wiring

The memory map indicates that there are zero read addresses and one write address. See Figure 6-64 for memory map of 1794-OV16 module.

# **Memory Mapping**

| Bit⇒<br>Word∜ | 15     | 14      | 13   | 12  | 11  | 10  | 09 | 08     | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
|---------------|--------|---------|------|-----|-----|-----|----|--------|----|----|----|----|----|----|----|----|
| Read          |        |         |      |     |     |     | N  | ot use | d  |    |    |    |    |    |    |    |
| Write         | O15    | 014     | O13  | 012 | 011 | O10 | 09 | 08     | 07 | O6 | O5 | 04 | О3 | 02 | 01 | 00 |
| Where:        | O = Oı | tput va | alue |     |     |     |    |        |    |    |    |    |    |    |    |    |

Figure 6-64. 1794-OV16 Module Memory Map

To write the discrete output bits for the 1794-OV16 module, a B16\_TO\_A block is used. See Figure 6-65 for example of GAP write block configuration.

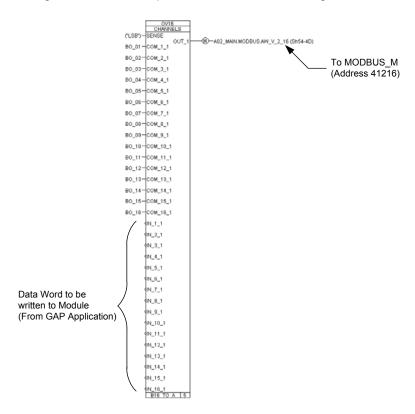
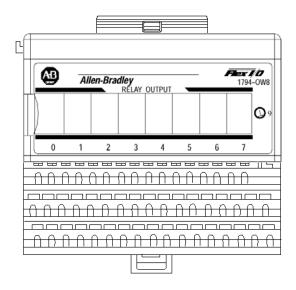




Figure 6-65. Example of 1794-OV16 GAP Write Blocks

## Allen-Bradley Relay Output (1794-OW8) Module



In this example, the relay outputs are individually fused to protect the module. See Figure 6-66 for example of 1794-OW8 module wiring.

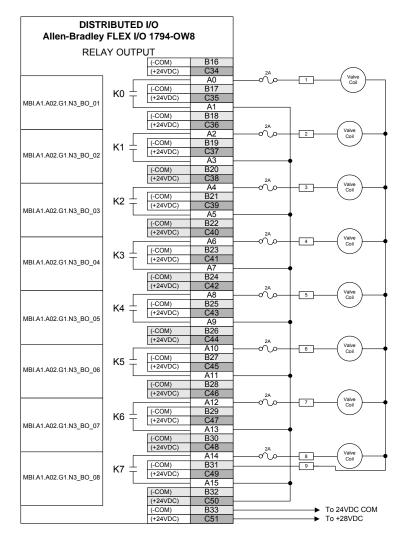



Figure 6-66. Example of 1794-OW8 Module Wiring

The memory map indicates that there is one read address and one write address. See Figure 6-67 for memory map of 1794-OW8 module.

# **Image Table Memory Map**

| Word                |                | Memo<br>Ma <sub>l</sub> |                  |        | ec. E<br>ctal E |        |         |                              | Des     | criptio | on       |    |    | For                             | mat |    |  |  |
|---------------------|----------------|-------------------------|------------------|--------|-----------------|--------|---------|------------------------------|---------|---------|----------|----|----|---------------------------------|-----|----|--|--|
| Read                |                | Inpu                    | ıt               | 00-    | 15 (00          | )–17)  | N       | ot use                       | d – res | erved   |          |    |    |                                 |     |    |  |  |
| Write               |                | Outp                    | ut               |        | 00–0            | 7      | CC      | elay O<br>orrespo<br>orrespo | onds to | outpu   | it 0, 01 |    |    | 0 = Output off<br>1 = Output on |     |    |  |  |
|                     |                |                         |                  | -80    | 15 (10          | )–17)  | N       | ot use                       | d       |         |          |    |    |                                 |     |    |  |  |
| Dec.                | 15             | 14                      | 13               | 12     | 11              | 10     | 09      | 08                           | 07      | 06      | 05       | 04 | 03 | 02                              | 01  | 00 |  |  |
| (Octal)             | 17             | 16                      | 15               | 14     | 13              | 12     | 11      | 10                           | 07      | 06      | 05       | 04 | 03 | 1 = Output on  03               |     |    |  |  |
| Write               |                |                         | No               | t used | – set           | to 0   |         |                              | 07      | 06      | O5       | 04 | 03 | 02                              | 01  | 00 |  |  |
| Where O<br>When bit | = Ou<br>= 0, ( | tput nu<br>output i     | ımber<br>is off; | when   | bit =1          | , outp | ut is o | n                            |         |         |          |    |    |                                 |     |    |  |  |

Figure 6-67. 1794-OW8 Module Memory Map

To write the discrete output bits for the 1794-OW8 module, again a B16\_TO\_A block is used. Since there are only eight outputs, only the first eight block inputs are used. See Figure 6-68 for example of GAP write block configuration.

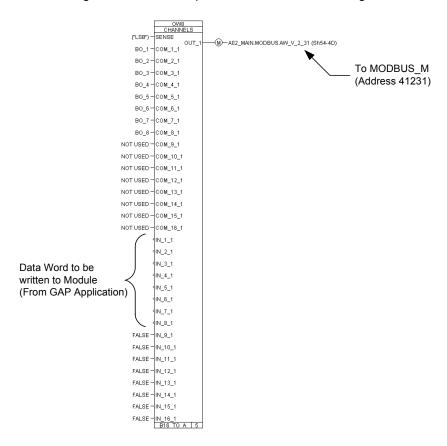
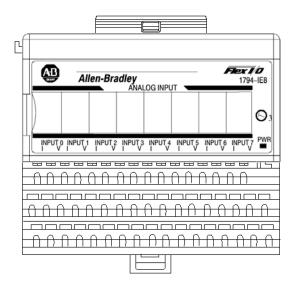




Figure 6-68. Example of 1794-OW8 GAP Write Blocks

## Allen-Bradley Analog Input (1794-IE8/B) Module



In this example, loop powered transducers are shown. See Figure 6-69 for example of 1794-IE8/B module wiring.

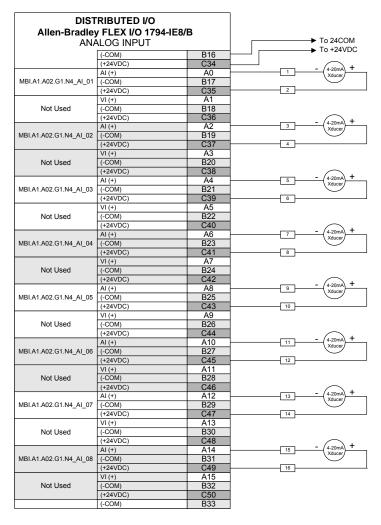



Figure 6-69. Example of 1794-IE8/B Module Wiring

The memory map indicates that there are nine read addresses and one write address. See Figure 6-70 for the input memory map and Figure 6-71 for the output memory map for the 1794-IE8/B module.

### **Input Map**

| Bit⇒<br>Word | 15    | 14                        | 13                                                                 | 12     | 11     | 10      | 09     | 08      | 07                 | 06     | 05    | 04 | 03 | 02 | 01 | 00 |
|--------------|-------|---------------------------|--------------------------------------------------------------------|--------|--------|---------|--------|---------|--------------------|--------|-------|----|----|----|----|----|
|              |       |                           |                                                                    |        |        |         | l<br>R | ead     |                    |        |       |    |    |    |    |    |
| 0            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 0  |    |    |    |    |
| 1            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 1  |    |    |    |    |
| 2            | S     |                           | Analog Input Value for Channel 2  Analog Input Value for Channel 3 |        |        |         |        |         |                    |        |       |    |    |    |    |    |
| 3            | S     |                           | Analog Input Value for Channel 2                                   |        |        |         |        |         |                    |        |       |    |    |    |    |    |
| 4            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 4  |    |    |    |    |
| 5            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 5  |    |    |    |    |
| 6            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 6  |    |    |    |    |
| 7            | S     |                           |                                                                    |        |        | A       | nalog  | Input ' | Value <sup>•</sup> | for Ch | annel | 7  |    |    |    |    |
| 8            | PU    |                           | I                                                                  | Not us | ed - s | et to 0 | )      |         | U7                 | U6     | U5    | U4 | U3 | U2 | U1 | U0 |
| Where:       | U = 1 | Sign bi<br>Underi<br>Powe | range                                                              |        | pleme  | nt)     |        |         |                    |        |       |    |    |    |    |    |

Figure 6-70. 1794-IE8/B Input Module Memory Map

**Underrange bits (U)**—These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, etc. **Power Up (unconfigured state) bit (PU)**—This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.

#### **Output Map**

| Bit⇒<br>Word∜ | 15              | 14 | 13 | 12      | 11 | 10 | 09 | 08   | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
|---------------|-----------------|----|----|---------|----|----|----|------|----|----|----|----|----|----|----|----|
|               |                 |    |    |         |    |    | Wı | rite |    |    |    |    |    |    |    |    |
| 0             | C7              | C6 | C5 | C4      | C3 | C2 | C1 | C0   | F7 | F6 | F5 | F4 | F3 | F2 | F1 | F0 |
| Where:        | C = C<br>F = Fu |    |    | ect bit |    |    | •  |      |    |    |    |    | •  |    |    |    |

# **Range Selection Bits**

| Ch | . 0              | Ch                         | . 1                                     | Ch                                                  | . 2                                                                                                                                                                                                                                                                 | Ch                                                                                                                                                                                                                                                                                                                      | . 3                                                                                                                                                                                                                                                                                                                                                                         | Ch                                                                                                                                                                                                                                                                                                                                                                                                                              | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|------------------|----------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F0 | CO               | F1                         | C1                                      | F2                                                  | C2                                                                                                                                                                                                                                                                  | F3                                                                                                                                                                                                                                                                                                                      | СЗ                                                                                                                                                                                                                                                                                                                                                                          | F4                                                                                                                                                                                                                                                                                                                                                                                                                              | C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>C</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 00 | 80               | 01                         | 09                                      | 02                                                  | 10                                                                                                                                                                                                                                                                  | 03                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                          | 04                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1  | 0                | 1                          | 0                                       | 1                                                   | 0                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0  | 1                | 0                          | 1                                       | 0                                                   | 1                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1  | 1                | 1                          | 1                                       | 1                                                   | 1                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0  | 0                | 0                          | 0                                       | 0                                                   | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | <b>F0 00</b> 1 0 | 00 08<br>1 0<br>0 1<br>1 1 | F0 C0 F1  00 08 01  1 0 1  0 1 0  1 1 1 | F0 C0 F1 C1  00 08 01 09  1 0 1 0  0 1 0 1  1 1 1 1 | F0         C0         F1         C1         F2           00         08         01         09         02           1         0         1         0         1           0         1         0         1         0           1         1         1         1         1 | F0         C0         F1         C1         F2         C2           00         08         01         09         02         10           1         0         1         0         1         0           0         1         0         1         0         1           1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3           00         08         01         09         02         10         03           1         0         1         0         1         0         1           0         1         0         1         0         1         0           1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3           00         08         01         09         02         10         03         11           1         0         1         0         1         0         1         0           0         1         0         1         0         1         0         1           1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4           00         08         01         09         02         10         03         11         04           1         0         1         0         1         0         1         0         1           0         1         0         1         0         1         0         1         0           1         1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4           00         08         01         09         02         10         03         11         04         12           1         0         1         0         1         0         1         0         1         0           0         1         0         1         0         1         0         1         0         1           1         1         1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4         F5           00         08         01         09         02         10         03         11         04         12         05           1         0         1         0         1         0         1         0         1         0         1         0         1           0         1         0         1         0         1         0         1         0         1         0         1         0           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4         F5         C5           00         08         01         09         02         10         03         11         04         12         05         13           1         0         1         0         1         0         1         0         1         0         1         0           0         1         0         1         0         1         0         1         0         1           1         1         1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4         F5         C5         F6           00         08         01         09         02         10         03         11         04         12         05         13         06           1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0< | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4         F5         C5         F6         C6           00         08         01         09         02         10         03         11         04         12         05         13         06         14           1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | F0         C0         F1         C1         F2         C2         F3         C3         F4         C4         F5         C5         F6         C6         F7           00         08         01         09         02         10         03         11         04         12         05         13         06         14         07           1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1 <t< td=""></t<> |

C = Configure select bit

Figure 6-71. 1794-IE8/B Output Module Memory Map

F = Full range bit

When configured to Off, individual input channels will return 0000H.

In this example, the write block is set up with Range Select bits for all channels set to 0-21mA. The read block is set up to be able to read the status of the underrange bits for all channels and the Power Up bit (PU). See Figure 6-72 for example of 1794-IE8/B Read and Write GAP blocks.

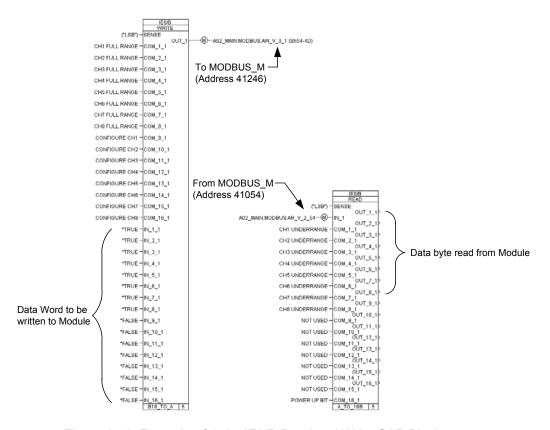



Figure 6-72. Example of 1794-IE8/B Read and Write GAP Blocks

To read and scale the analog input words for the 1794-IE8/B module, CALCULATE blocks were used. For the GAP block to convert the raw counts read from the 1794-IE8/B module to engineering units, the relationship between raw counts and engineering units needs to be specified in the CALCULATE block. The raw count to milliamp relationship can be found in the Allen-Bradley manual 1794-6.5.2. See Figure 6-73 for Analog Data Format Table. The table specifies counts in hexadecimal form and the CALCULATE block requires the RAW\_LOW and RAW\_HIGH fields to be entered in decimal form. Under the 0-20mA column in the Analog Data Format Table, 21mA is equivalent to 7FF8 hexadecimal. Converting 7FF8 to decimal equals 32760 Counts RAW\_HIGH. In this example the CALCULATE block scales the 0-32760 counts for 0-21mA (engineering units) for the module. The output of the CALCULATE block is in engineering units (milliamps) and is used by the GAP application as the milliamp value read from the 1794-IE8/B module. See Figure 6-74 for example of 1794-IE8/B GAP CALCULATE scaling blocks.

| O            | 4–20mA Mode | 0-20mA Mode | Valtana (10 | ±10 Vo | lt Mode | 0-10 Volt |
|--------------|-------------|-------------|-------------|--------|---------|-----------|
| Current (mA) | 4-20MA Mode | U-ZUMA MODE | Voltage (V) | Input  | Output  | Mode      |
|              |             |             | -10.50      | 8000   | 8000    |           |
| 0.00         |             | 0000        | -10.00      | 8620   | 8618    |           |
| 1.00         |             | 0618        | -9.00       | 9250   | 9248    |           |
| 2.00         |             | 0C30        | -8.00       | 9E80   | 9E78    |           |
| 3.00         |             | 1248        | -7.00       | AAB0   | AAA8    |           |
| 4.00         | 0000        | 1860        | -6.00       | B6E0   | B6D8    |           |
| 5.00         | 0787        | 1E78        | -5.00       | C310   | C310    |           |
| 6.00         | 0F0F        | 2490        | -4.00       | CF40   | CF40    |           |
| 7.00         | 1696        | 2AA8        | -3.00       | DB70   | DB70    |           |
| 8.00         | 1E1E        | 30C0        | -2.00       | E7A0   | E7A0    |           |
| 9.00         | 25A5        | 36D8        | -1.00       | F3D0   | F3D0    |           |
| 10.00        | 2D2D        | 3CF0        | 0.00        | 0000   | 0000    | 0000      |
| 11.00        | 34B4        | 4310        | 1.00        | 0C30   | 0C30    | 0C30      |
| 12.00        | 3C3C        | 4928        | 2.00        | 1860   | 1860    | 1860      |
| 13.00        | 43C3        | 4F40        | 3.00        | 2490   | 2490    | 2490      |
| 14.00        | 4B4B        | 5558        | 4.00        | 30C0   | 30C0    | 30C0      |
| 15.00        | 52D2        | 5B70        | 5.00        | 3CF0   | 3CF0    | 3CF0      |
| 16.00        | 5A5A        | 6188        | 6.00        | 4920   | 4928    | 4928      |
| 17.00        | 61E1        | 67A0        | 7.00        | 5550   | 5558    | 5558      |
| 18.00        | 6969        | 6DB8        | 8.00        | 6180   | 6188    | 6188      |
| 19.00        | 70F0        | 73D0        | 9.00        | 6DB0   | 6DB8    | 6DB8      |
| 20.00        | 7878        | 79E8        | 10.00       | 79E0   | 79E8    | 79E8      |
| 21.00        | 7FFF        | 7FF8        | 10.50       | 7FF0   | 7FF8    | 7FF8      |

Figure 6-73. 1794-IE8/B and 1794-OE4/B Analog Data Format Table

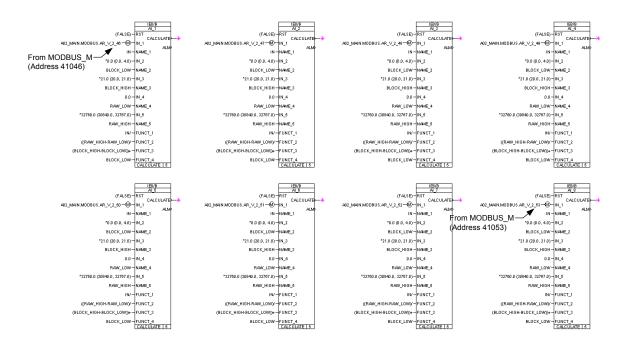
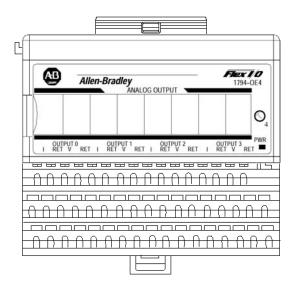




Figure 6-74. Example of 1794-IE8/B GAP CALCULATE Scaling Blocks

## Allen-Bradley Analog Output (1794-OE4/B) Module



See Figure 6-75 for example of 1794-OE4/B module wiring.

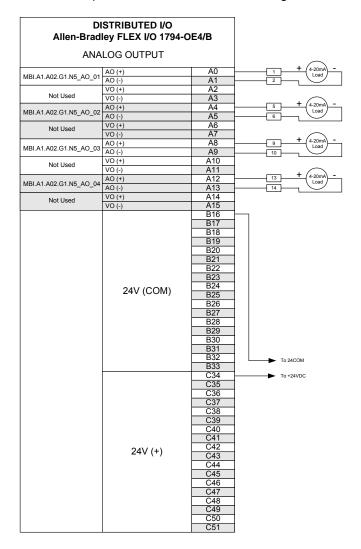



Figure 6-75. Example of 1794-OE4/B Module Wiring

The memory map indicates that there is one read address and 13 write addresses. Output memory map addresses 6-9 are not used and 10-13 are used to specify safe state values that are not used in this example. Therefore, the output memory map words 0-5 correspond to the first six write words specified in the address spreadsheet. See Figure 6-76 for the input memory map and Figure 6-77 for the output memory map for the 1794-OE4/B module.

### **Input Map**

| Bit⇒<br>Word∜ | 15    | 14                        | 13                          | 12 | 11    | 10     | 09      | 08     | 07    | 06     | 05     | 04     | 03     | 02     | 01     | 00 |
|---------------|-------|---------------------------|-----------------------------|----|-------|--------|---------|--------|-------|--------|--------|--------|--------|--------|--------|----|
| 0             | ٩٦    |                           | Not used – set to 0 3 2 1 0 |    |       |        |         |        |       |        |        |        |        |        | W<br>0 |    |
| Where:        | volta | Diagn<br>ige ou<br>= Powe | tputs.)                     |    | curre | nt out | put wir | e brol | en or | load r | esista | nce hi | gh. (N | ot use | d on   |    |

Figure 6-76. 1794-OE4/B Module Input Memory Map

## **Output Map**

| Bit⇒<br>Word∜ | 15         | 14                                       | 13               | 12                  | 11  | 10   | 09      | 08      | 07      | 06      | 05      | 04  | 03     | 02     | 01     | 00     |
|---------------|------------|------------------------------------------|------------------|---------------------|-----|------|---------|---------|---------|---------|---------|-----|--------|--------|--------|--------|
| 0             | S          |                                          |                  |                     |     |      | Ana     | log Da  | ata – C | Chann   | el 0    |     |        |        |        |        |
| 1             | S          |                                          |                  |                     |     |      | Ana     | alog Da | ata – C | Chann   | el 1    |     |        |        |        |        |
| 2             | S          |                                          |                  |                     |     |      | Ana     | ilog Da | ata – C | Chann   | el 2    |     |        |        |        |        |
| 3             | S          |                                          |                  |                     |     |      | Ana     | ilog Da | ata – C | Chann   | el 3    |     |        |        |        |        |
| 4             |            |                                          |                  |                     | Not | used | – set t | о 0     |         |         |         |     | M<br>3 | M<br>2 | M<br>1 | M<br>0 |
| 5             | Not        | used                                     | – set t          | 0 0                 | C3  | C2   | C1      | C0      | Not     | used    | – set t | o 0 | F3     | F2     | F1     | F0     |
| 6–9           |            |                                          |                  |                     |     |      | Not     | used    | – set t | 0 0     |         |     |        |        |        |        |
| 10            | S          |                                          |                  |                     |     |      | Safe s  | state v | alue fo | r char  | nnel 0  |     |        |        |        |        |
| 11            | S          |                                          |                  |                     |     |      | Safe s  | state v | alue fo | or char | nnel 1  |     |        |        |        |        |
| 12            | S          |                                          |                  |                     |     |      | Safe s  | state v | alue fo | or char | nel 2   |     |        |        |        |        |
| 13            | S          |                                          |                  |                     |     |      | Safe s  | state v | alue fo | r char  | nnel 3  |     |        |        |        |        |
| Where:        | M =<br>C = | Sign bi<br>Multipi<br>Config<br>Full rai | lex co<br>ure se | ntrol bi<br>lect bi | it  | ent) |         |         |         |         |         |     |        |        |        |        |

Figure 6-77. 1794-OE4/B Module Output Memory Map

Multiplex control bit (M) for individual channels. These bits control the safe state analog outputs. – Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, and so on.

1 = use words 0,1,2 or 3 as directed by channel number n.

0 = use words 10, 11, 12 or 13 as directed by channel number n.

For definition of Fx and Cx bits, see Figure 6-78.

# Range Selection Bits

| Channel No.        | Ch | . 0 | Ch | . 1 | Ch | . 2 | Ch | . 3 |
|--------------------|----|-----|----|-----|----|-----|----|-----|
|                    | F0 | C0  | F1 | C1  | F2 | C2  | F3 | C3  |
| Decimal Bits       | 00 | 08  | 01 | 09  | 02 | 10  | 03 | 11  |
| 0-10V<br>dc/0-20mA | 1  | 0   | 1  | 0   | 1  | 0   | 1  | 0   |
| 4–20mA             | 0  | 1   | 0  | 1   | 0  | 1   | 0  | 1   |
| -10 to +10V dc     | 1  | 1   | 1  | 1   | 1  | 1   | 1  | 1   |
| Off <sup>1</sup>   | 0  | 0   | 0  | 0   | 0  | 0   | 0  | 0   |

C = Configure select bit

Figure 6-78. 1794-OE4/B Write Range Selection Bits

In this example, the read block is set up to monitor the four broken wire bits and the power up bit on the module. The write blocks are set up to configure the module for multiplex control and 0-20mA range. Since all of the multiplex control (M) bits are set to true, the safe state words in addresses 10-13 are not relevant. See Figure 6-79 for example of 1794-OE4/B Read and Write GAP blocks.

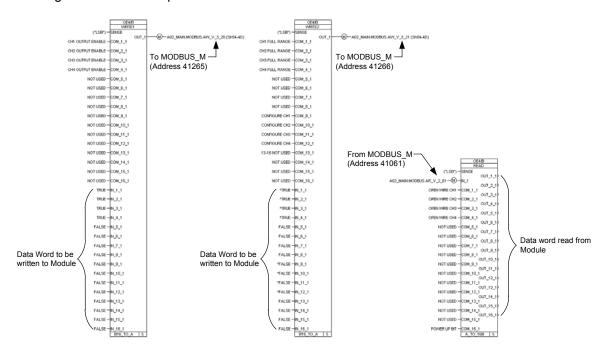



Figure 6-79. Example of 1794-OE4/B Read and Write GAP Blocks

F = Full range bit

When configured to Off, individual channels will drive 0V/0mA.

To write the analog output words for the 1794-OE4/B module, CALCULATE blocks were again used. For the 1794-OE4/B module to output the correct current, the GAP block must convert the engineering units requested to raw counts used by the module. The milliamp to raw count relationship can be found in Allen-Bradley manual 1794-6.5.2. See Figure 6-73 for Analog Data Format Table. The table specifies counts in hexadecimal form and the CALCULATE block requires the RAW\_LOW and RAW\_HIGH fields to be entered in decimal form. Under the 0-20mA column, of the Analog Data Format Table, 21mA is equivalent to 7FF8 hexadecimal and 0mA is 0000 hexadecimal. Converting 7FF8 to decimal equals 32760 counts high. In this example, the block scales 0-21mA (engineering units) for 0-32760 counts for the module. The CALCULATE block output is connected to the MODBUS\_M block address associated with the correct memory map address. In this example a 0 to 24 mA tunable set for 4mA is shown for the input to the CALCULATE block. See Figure 6-80 for example of 1794-OE4/B GAP Analog Write Blocks.

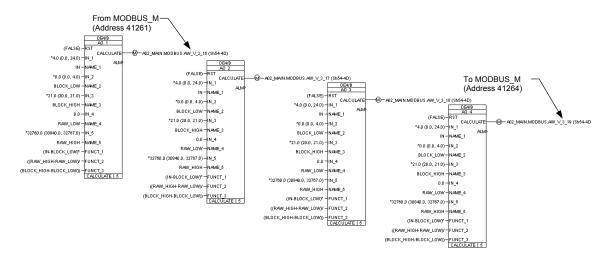
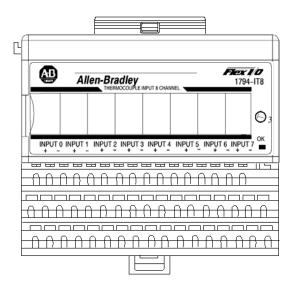




Figure 6-80. Example of 1794-OE4/B GAP Analog Write Blocks

**NOTICE** 

An AO requires a limiter on the input value to keep it from exceeding the 21 mA value. Values above 21 mA will roll back over to zero.

## Allen-Bradley Thermocouple Input (1794-IT8) Module



In this example, the first six channels are used for thermocouples and the last two channels are used for monitoring the reference junction temperatures. See Figure 6-81 for example of 1794-IT8 module wiring.

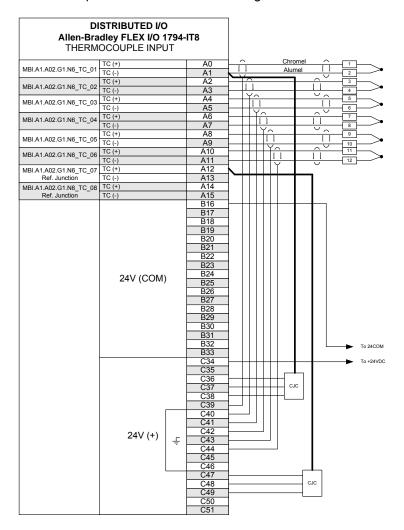



Figure 6-81. Example of 1794-IT8 Module Wiring

The memory map indicates that there are eleven read addresses and 3 write address. See Figure 6-82 for the input memory map and Figures 6-83 through 6-86 for the output memory map for the 1794-IT8 module.

| Thermocoup  | _  | _                                         | _  | _      |        |            | _           |              |           |         |           |       | **        | **               |             |             |
|-------------|----|-------------------------------------------|----|--------|--------|------------|-------------|--------------|-----------|---------|-----------|-------|-----------|------------------|-------------|-------------|
| Decimal Bit | 15 | 14                                        | 13 | 12     | 11     | 10         | 09          | 08           | 07        | 06      | 05        | 04    | 03        | 02               | 01          | 00          |
| Octal Bit   | 17 | 16                                        | 15 | 14     | 13     | 12         | 11          | 10           | 07        | 06      | 05        | 04    | 03        | 02               | 01          | 00          |
| Read Word 0 |    |                                           |    |        |        |            |             |              | Reserve   | ed      |           |       |           |                  |             |             |
| 1           |    |                                           |    |        |        |            |             | Chan         | nel 0 Inp | ut Data | l         |       |           |                  |             |             |
| 2           |    | Channel 1 Input Data Channel 2 Input Data |    |        |        |            |             |              |           |         |           |       |           |                  |             |             |
| 3           |    |                                           |    |        |        |            |             |              |           |         |           |       |           |                  |             |             |
| 4           |    |                                           |    |        |        |            |             | Chani        | nel 3 Inp | ut Data | ı         |       |           |                  |             |             |
| 5           |    |                                           |    |        |        |            |             | Chani        | nel 4 Inp | ut Data | ı         |       |           |                  |             |             |
| 6           |    |                                           |    |        |        |            |             | Chan         | nel 5 Inp | ut Data | ı         |       |           |                  |             |             |
| 7           |    |                                           |    |        |        |            |             | Chani        | nel 6 Inp | ut Data | ı         |       |           |                  |             |             |
| 8           |    |                                           |    |        |        |            |             | Chani        | nel 7 Inp | ut Data | l         |       |           |                  |             |             |
| 9           |    |                                           |    | Overra | ange B | ts         |             |              |           |         |           | Under | range B   | its              |             |             |
| 10          | 0  | 0                                         | 0  | 0      | 0      | Bad<br>Cal | Cal<br>Done | Cal<br>Range | 0         | Diag    | nostic St | atus  | Pwr<br>Up | Bad<br>Structure | CJC<br>over | CJC<br>Unde |

Figure 6-82. 1794-IT8 Module Input Memory Map

**Underrange bits**—These bits are set if the input signal is below the input channel's minimum range.

**Overrange bits**—These bits are set if 1), the input signal is above the input channel's maximum range, or 2), an open detector is detected.

**Cold Junction sensor underrange bit**—This bit is set if the cold junction temperature is below 0 °C.

**Cold Junction sensor overrange bit**—This bit is set if the cold junction temperature is above 70 °C.

**Bad Structure**—This bit is set if an invalid thermocouple type is selected. **Powerup bit**—This bit is set (1) until configuration data is received by the module.

**Critical Error bits**—If these bits are anything other than all zeroes, return the module to the factory for repair.

**Calibration Range bit**—Set to 1 if a reference signal is out of range during calibration.

**Calibration Done bit**—Set to 1 after an initiated calibration cycle is complete. **Calibration Bad bit**—Set to 1 if the channel has not had a valid calibration.

| Thermocouple/mV Input Module (1794-IT8) Write |       |       |                        |      |                                         |        |          |     |            |                  |                     |     |    |          |           |      |
|-----------------------------------------------|-------|-------|------------------------|------|-----------------------------------------|--------|----------|-----|------------|------------------|---------------------|-----|----|----------|-----------|------|
| Dec. Bit                                      | 15    | 14    | 13                     | 12   | 11                                      | 10     | 09       | 80  | 07         | 06               | 05                  | 04  | 03 | 02       | 01        | 00   |
| Octal Bit                                     | 17    | 16    | 15                     | 14   | 13                                      | 12     | 11       | 10  | 07         | 06               | 05                  | 04  | 03 | 02       | 01        | 00   |
| Write Word 0                                  |       |       | 8-Bit Calibration Mask |      |                                         |        |          |     | Cal<br>Clk | Cal hi<br>Cal lo | Filter Cutoff       |     |    | FDF      | Data      | Туре |
| 1                                             | Therr | nocou | ple 3                  | Туре | Th                                      | ermoco | uple 2 T | ype | 1          | Thermoco         | uple 1 Ty           | уре | Th | nermocou | ole 0 Typ | e    |
| 2                                             | Therr | nocou | ple 7                  | Туре | Thermocouple 6 Type Thermocouple 5 Type |        |          |     |            |                  | Thermocouple 4 Type |     |    |          |           |      |
| Where: FDF = fixed digital filter bit         |       |       |                        |      |                                         |        |          |     |            |                  |                     |     |    |          |           |      |

Figure 6-83. 1794-IT8 Module Output Memory Map

| Word         | Decimal Bit<br>(Octal Bit) |                    | Description                                                                                                                                                                                                                                       |          |                  |                                                                                                     |  |  |  |  |  |  |  |  |
|--------------|----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Write Word 0 | 00-01 (00-01)              | Modul              | e Data T                                                                                                                                                                                                                                          | уре      |                  |                                                                                                     |  |  |  |  |  |  |  |  |
|              |                            | Bit                | 01                                                                                                                                                                                                                                                | 00       | Definit          | ion                                                                                                 |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 0        | °C (de           | °C (default)                                                                                        |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 1        | ٥F               |                                                                                                     |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 0        | Bipolar          | counts scaled between -32768 and +32767                                                             |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 1        | Unipola          | ar counts scaled between 0 and 65535                                                                |  |  |  |  |  |  |  |  |
|              | Bit 02 (02)                | 100%               | ixed Digital Filter – When this bit is set (1), a software digital filter is enabled. This filter settles to<br>00% of a Full Scale step input in 60 times the selected first notch filter time shown on page 4–3.<br>Default – filter disabled.) |          |                  |                                                                                                     |  |  |  |  |  |  |  |  |
|              | 03-05 (03-05)              | A/D Fi             | A/D Filter First Notch Frequency                                                                                                                                                                                                                  |          |                  |                                                                                                     |  |  |  |  |  |  |  |  |
|              |                            | Bit                | 05                                                                                                                                                                                                                                                | 04       | 03 Definition    |                                                                                                     |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 0        | 0 10Hz (default) |                                                                                                     |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 0        | 1                | 25Hz                                                                                                |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 1        | 0                | 50Hz                                                                                                |  |  |  |  |  |  |  |  |
|              |                            |                    | 0                                                                                                                                                                                                                                                 | 1        | 1                | 60Hz                                                                                                |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 0        | 0                | 100Hz                                                                                               |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 0        | 1                | 250Hz                                                                                               |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 1        | 0                | 500Hz                                                                                               |  |  |  |  |  |  |  |  |
|              |                            |                    | 1                                                                                                                                                                                                                                                 | 1        | 1                | 1000hZ                                                                                              |  |  |  |  |  |  |  |  |
|              | 06 (06)                    | Calibra            | tion Hig                                                                                                                                                                                                                                          | h/Low bi | t - This I       | bit is set during gain calibration; reset during offset calibration.                                |  |  |  |  |  |  |  |  |
|              | 07 (07)                    | Calibra<br>calibra |                                                                                                                                                                                                                                                   | k - this | bit must         | be set to 1 to prepare for a calibration cycle; then reset to 0 to initiate                         |  |  |  |  |  |  |  |  |
|              | 08-15 (10-17)              |                    |                                                                                                                                                                                                                                                   |          |                  | l, or channels, to be calibrated will have the correct mask bit set. Bit 8 to channel 1, and so on. |  |  |  |  |  |  |  |  |

Figure 6-84. 1794-IT8 Write Word 0

#### **Hardware First Notch Filter**

| A/D Filter First Notch<br>Frequency<br>(effective resolution) | 10Hz<br>(16-bits)  | 25Hz<br>(16-bits)               | 50Hz<br>(16-bits) | 60Hz<br>(16-bits) | 100Hz<br>(16-bits) | 250Hz<br>(13-bits) | 500Hz<br>(11-bits) | 1000Hz<br>(9-bits) |  |  |  |  |
|---------------------------------------------------------------|--------------------|---------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|--|
| Number of channels scanned                                    |                    | System Throughput (in ms and s) |                   |                   |                    |                    |                    |                    |  |  |  |  |
| 1                                                             | 325                | 145                             | 85                | 75                | 55                 | 37                 | 31                 | 28                 |  |  |  |  |
| 2                                                             | 650                | 290                             | 170               | 150               | 110                | 74                 | 62                 | 56                 |  |  |  |  |
| 3                                                             | 975                | 435                             | 255               | 225               | 165                | 111                | 93                 | 84                 |  |  |  |  |
| 4                                                             | 1.3s               | 580                             | 340               | 300               | 220                | 148                | 124                | 112                |  |  |  |  |
| 5                                                             | 1.625s             | 725                             | 425               | 375               | 275                | 185                | 155                | 140                |  |  |  |  |
| 6                                                             | 1.95s              | 870                             | 510               | 450               | 330                | 222                | 186                | 168                |  |  |  |  |
| 7                                                             | 2.275s             | 1.015s                          | 595               | 525               | 385                | 259                | 217                | 196                |  |  |  |  |
| 8                                                             | 2.60s <sup>1</sup> | 1.16s                           | 680               | 600               | 440                | 296                | 248                | 224                |  |  |  |  |

Figure 6-85. 1794-IT8 Hardware First Notch Filter

| Word                                                                     | Decimal Bit<br>(Octal Bit) |        |          |        |         |          | Description                                                 |
|--------------------------------------------------------------------------|----------------------------|--------|----------|--------|---------|----------|-------------------------------------------------------------|
| Write Word 2                                                             | 00-03 (00-03)              | Channe | el 0 The | mocoup | le Type |          |                                                             |
|                                                                          |                            | Bit    | 03       | 02     | 01      | 00       | Thermocouple Type - Range                                   |
|                                                                          |                            |        | 0        | 0      | 0       | 0        | Millivolts (default)                                        |
|                                                                          |                            |        | 0        | 0      | 0       | 1        | B 300 to 1800°C (572 to 3272°F)                             |
|                                                                          |                            |        | 0        | 0      | 1       | 0        | E -270 to 1000°C (-454 to 1832°F)                           |
|                                                                          |                            |        | 0        | 0      | 1       | 1        | J -210 to 1200°C (-346 to 2192°F)                           |
|                                                                          |                            |        | 0        | 1      | 0       | 0        | K -71 to 1372°C (-95 to 2502°F)                             |
|                                                                          |                            |        | 0        | 1      | 0       | 1        | R -50 to 1768°C (-58 to 3214°F)                             |
|                                                                          |                            |        | 0        | 1      | 1       | 0        | S -50 to 1768°C (-58 to 3214°F)                             |
|                                                                          |                            |        | 0        | 1      | 1       | 1        | T -73 to 400°C (-99 to 752°F)                               |
|                                                                          |                            |        | 1        | 0      | 0       | 0        | C 0 to 2315°C (32 to 4199°F)                                |
|                                                                          |                            |        | 1        | 0      | 0       | 1        | N -270 to 1300°C (-450 to 2372°F)                           |
|                                                                          |                            |        | 1        | 0      | 1       | 0        | Reserved                                                    |
|                                                                          |                            |        | 1        | 0      | 1       | 1        | Reserved                                                    |
|                                                                          |                            |        | 1        | 1      | 0       | 0        | Module reports cold junction temperature for channels 00-03 |
|                                                                          |                            |        | 1        | 1      | 0       | 1        | Module reports cold junction temperature for channels 04-07 |
|                                                                          |                            |        | 1        | 1      | 1       | 0        | Reserved                                                    |
|                                                                          |                            |        | 1        | 1      | 1       | 1        | No sensor connected (do not scan)                           |
|                                                                          | 04-07 (04-07)              | Channe | el 1 The | mocoup | le Type | (see bit | ts 00-03)                                                   |
|                                                                          | 08-11 (10-13)              | Channe | el 2 The | mocoup | le Type | (see bit | ts 00-03)                                                   |
|                                                                          | 12-15 (14-17)              | Channe | el 3 The | mocoup | le Type | (see bit | ts 00-03)                                                   |
| Write Word 3                                                             | 00-03 (00-03)              | Channe | el 4 The | mocoup | le Type | (see wi  | rite word 2, bits 00-03)                                    |
|                                                                          | 04-07 (04-07)              | Channe | el 5 The | mocoup | le Type | (see wi  | rite word 2, bits 00-03)                                    |
|                                                                          | 08-11 (10-13)              | Channe | el 6 The | mocoup | le Type | (see wi  | rite word 2, bits 00-03)                                    |
| 12-15 (14-17) Channel 7 Thermocouple Type (see write word 2, bits 00-03) |                            |        |          |        |         |          |                                                             |

Figure 6-86. 1794-IT8 Write Word 1 and 2 (Note: Write Words 2 & 3 should be labeled 1 & 2)

In this example, the first read block is set up to monitor the underrange and overrange bits on the module. The second read block monitors the Cold Junction sensor underrange bit, Cold Junction sensor overrange bit, Bad Structure, Powerup bit, Critical Error bits, Calibration Range bit, Calibration Done bit, and Calibration Bad bit. The first write word (0) sets the module for °F units, 100 Hz filtering, and no calibration. The second write word (1) sets the module for type K thermocouples on channels 0, 1, 2, and 3. The third write word (2) sets the module for type K thermocouples for channels 4 and 5, cold junction (channels 0-3) temperature on channel 6, and cold junction (channels 4-7) on channel 7. See Figure 6-87 for GAP read and write block example.

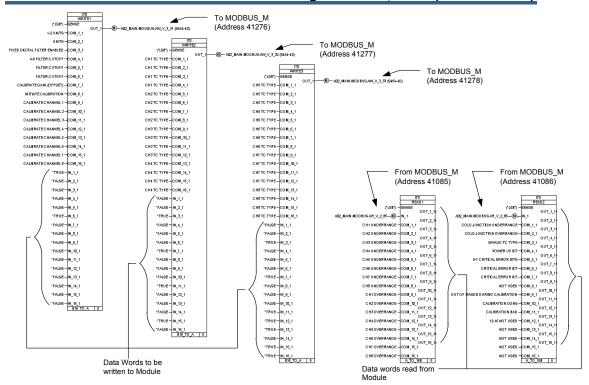



Figure 6-87. Example of 1794-IT8 Read and Write GAP Blocks

To read the analog input words for the 1794-IT8 module, DIVIDE blocks were used. According to the 1794-IT8 manual, the thermocouple module's output must be scaled to one tenth the value read by the 3170-MBS interface module. See Figure 6-88 for Input scaling of the thermocouples.

# Input Scaling

| Input Type | Range              | Scaling        | Maximum<br>Resolution |
|------------|--------------------|----------------|-----------------------|
| Millivolt  | -76.50 to +76.50mV | -7650 to +7650 | 10μV                  |
| Type B     | 300 to 1800°C      | 3000 to 18000  | 0.1°C                 |
| Type E     | -270 to 1000°C     | 2700 to 10000  | 0.1°C                 |
| Type J     | -210 to 1200°C     | -2100 to 12000 | 0.1°C                 |
| Type K     | -270 to 1372°C     | -2700 to 13720 | 0.1°C                 |
| Type R     | -50 to 1768°C      | -500 to 17680  | 0.1°C                 |
| Type S     | -50 to 1768°C      | -500 to 17680  | 0.1°C                 |
| Type T     | -270 to 400°C      | -2700 to 4000  | 0.1°C                 |
| Type N     | -270 to 1300°C     | -2700 to 13000 | 0.1°C                 |
| Type C     | 0 to 2315°C        | 0 to 23150     | 0.1°C                 |
| Туре В     | 572 to 3272°F      | 5720 to 32720  | 0.1ºF                 |
| Type E     | -454 to 1832°F     | -4540 to 18320 | 0.1ºF                 |
| Type J     | -346 to 2192°F     | -3460 to 21920 | 0.1°F                 |
| Type K     | -454 to 2502°F     | -4540 to 25020 | 0.1°F                 |
| Type R     | -58 to 3214°F      | -580 to 32140  | 0.1ºF                 |
| Type S     | -58 to 3214°F      | -580 to 32140  | 0.1ºF                 |
| Туре Т     | -454 to 752°F      | -4540 to 7520  | 0.1°F                 |
| Type N     | -450 to 2372°F     | -4500 to 23720 | 0.1°F                 |
| Type C     | 32 to 4199°F       | 320 to 41990   | 0.1ºF                 |

Note: In thermocouple mode, scaled number has an implied decimal point 1 digit from the right. For example, if reading is 18000, temperature is 1800.0. In millivolt mode, the implied decimal point is to the left of the last 2 digits. For example, if reading is 2250, actual reading is 22.50mV

Figure 6-88. 1794-IT8 Input Scaling

A divide by 10 block is used to scale the thermocouple outputs. Again, from the 1794-IT8 manual, the range of the cold junction (reference junction) sensor is 0-70  $^{\circ}$ C. It has been found that the output must be scaled to one hundredth the value output by the 3170-MBS interface module. A divide by 100 block is used to accomplish this. The output of the DIVIDE block will be in engineering units ( $^{\circ}$ F). See Figure 6-89 for example of 1794-IT8 GAP Analog Read Blocks.

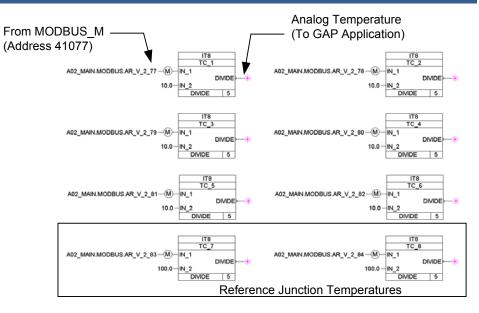
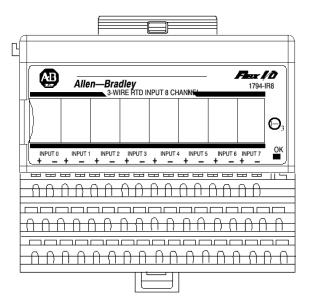




Figure 6-89. Example of 1794-IT8 GAP Analog Read Blocks

# Allen-Bradley RTD Input (1794-IR8) Module



See Figure 6-90 for example of 1794-IR8 module wiring.

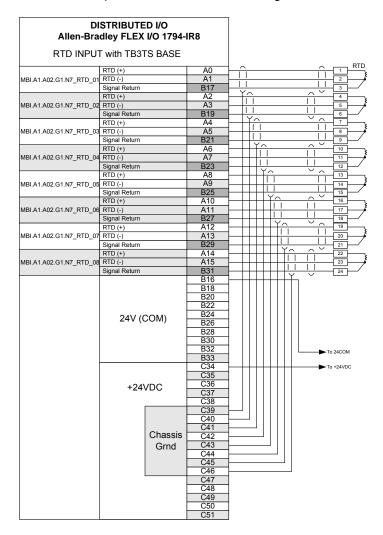



Figure 6-90. Example of 1794-IR8 Module Wiring

The memory map indicates that there are eleven read addresses and 3 write address. See Figure 6-91 for the input memory map and Figures 6-92 through 6-95 for the output memory map for the 1794-IR8 module.

RTD Analog Input Module (1794-IR8) Read Words

| Decimal Bit | 15                             | 14                   | 13 | 12 | 11 | 10         | 09          | 08           | 07      | 06   | 05               | 04 | 03        | 02       | 01 | 00 |
|-------------|--------------------------------|----------------------|----|----|----|------------|-------------|--------------|---------|------|------------------|----|-----------|----------|----|----|
| Octal Bit   | 17                             | 16                   | 15 | 14 | 13 | 12         | 11          | 10           | 07      | 06   | 05               | 04 | 03        | 02       | 01 | 00 |
| Word 0      |                                |                      |    |    |    |            |             | Reser        | ved     |      |                  |    |           |          |    |    |
| 1           |                                |                      |    |    |    |            | CI          | hannel 0 I   | nput Da | ata  |                  |    |           |          |    |    |
| 2           |                                |                      |    |    |    |            | CI          | hannel 1 l   | nput Da | ata  |                  |    |           |          |    |    |
| 3           |                                |                      |    |    |    |            | CI          | hannel 2 l   | nput Da | ata  |                  |    |           |          |    |    |
| 4           |                                | Channel 3 Input Data |    |    |    |            |             |              |         |      |                  |    |           |          |    |    |
| 5           |                                |                      |    |    |    |            | CI          | hannel 4 I   | nput Da | ata  |                  |    |           |          |    |    |
| 6           |                                |                      |    |    |    |            | CI          | hannel 5 I   | nput Da | ata  |                  |    |           |          |    |    |
| 7           |                                |                      |    |    |    |            | Cl          | hannel 6 I   | nput Da | nta  |                  |    |           |          |    |    |
| 8           |                                | Channel 7 Input Data |    |    |    |            |             |              |         |      |                  |    |           |          |    |    |
| 9           | Overrange Bits Underrange Bits |                      |    |    |    |            |             |              |         | lits |                  |    |           |          |    |    |
| 10          | 0                              | 0                    | 0  | 0  | 0  | Bad<br>Cal | Cal<br>Done | Cal<br>Range | 0       |      | agnost<br>atus B |    | Pwr<br>Up | Reserved | 0  | 0  |

Figure 6-91. 1794-IR8 Module Input Memory Map

**Underrange bits**—These bits are set if the input signal is below the input channel's minimum range.

**Overrange bits**—These bits are set if 1) the input signal is above the input channel's maximum range, or 2) an open detector is detected.

**Powerup bit**—This bit is set (1) until configuration data is received by the module.

**Critical Error bits**—If these bits are anything other than all zeroes, return the module to the factory for repair.

Calibration Range bit—Set to 1 if a reference signal is out of range during calibration

**Calibration Done bit**—Set to 1 after an initiated calibration cycle is complete. **Calibration Bad bit**—Set to 1 if the channel has not had a valid calibration.

RTD Analog Input Module (1794-IR8) Write Words

| Decimal Bit | 15                                           | 15 14 13 12 11 10 09 08 |  |  |  |  |  |    | 07         | 06               | 05  | 04      | 03      | 02      | 01  | 00 |
|-------------|----------------------------------------------|-------------------------|--|--|--|--|--|----|------------|------------------|-----|---------|---------|---------|-----|----|
| Octal Bit   | 17                                           | 17 16 15 14 13 12 11 10 |  |  |  |  |  | 07 | 06         | 05               | 04  | 03      | 02      | 01      | 00  |    |
| Word 0      |                                              | 8-bit Calibration Mask  |  |  |  |  |  |    | Cal<br>Clk | Cal Hi<br>Cal Lo | Fil | ter Cut | off     | Enh     | MI  | DT |
| 1           |                                              | RTD 3 Type RTD 2 Type   |  |  |  |  |  |    |            | RTD 1 T          | уре |         |         | RTD 0 T | уре |    |
| 2           | RTD 7 Type RTD 6 Type                        |                         |  |  |  |  |  |    | RTD 5 T    | уре              |     |         | RTD 4 T | уре     |     |    |
|             | Where: Enh = Enhanced MDT = Module Data Type |                         |  |  |  |  |  |    |            |                  |     |         |         |         |     |    |

Figure 6-92. 1794-IR8 Module Output Memory Map

| Word         | Dec. Bits<br>(Octal Bits) |                                                                                                                                                                     |                                                                                                                                                                                                                        |         |          | Description                                                             |  |  |  |  |  |  |  |
|--------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Write word 0 | 00-01                     | Modul                                                                                                                                                               | e Data 1                                                                                                                                                                                                               | уре     |          |                                                                         |  |  |  |  |  |  |  |
|              |                           | Bit                                                                                                                                                                 | 01                                                                                                                                                                                                                     | 00      |          |                                                                         |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0 0 °C (default)                                                                                                                                                                                                       |         |          |                                                                         |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0                                                                                                                                                                                                                      | 1       | ٩F       |                                                                         |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 0       | Bipola   | r counts scaled between -32768 and +32767                               |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 1       | Unipol   | ar counts scaled between 0 and 65535                                    |  |  |  |  |  |  |  |
|              | 02                        | compa                                                                                                                                                               | Enhanced mode select – measures voltage drop across a precision resistor in the module to<br>compare with the unknown input. This improves module temperature drift characteristics, but<br>reduces module throughput. |         |          |                                                                         |  |  |  |  |  |  |  |
|              | 03-05                     | A/D Fil                                                                                                                                                             | lter Firs                                                                                                                                                                                                              | t Notch | Freque   | псу                                                                     |  |  |  |  |  |  |  |
|              |                           | Bit                                                                                                                                                                 | 05                                                                                                                                                                                                                     | 04      | 03       | Definition                                                              |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0                                                                                                                                                                                                                      | 0       | 0        | 10Hz (default)                                                          |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0                                                                                                                                                                                                                      | 0       | 1        | 25Hz                                                                    |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0                                                                                                                                                                                                                      | 1       | 0        | 50Hz                                                                    |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 0                                                                                                                                                                                                                      | 1       | 1        | 60Hz                                                                    |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 0       | 0        | 100Hz                                                                   |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 0       | 1        | 250Hz                                                                   |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 1       | 0        | 500Hz                                                                   |  |  |  |  |  |  |  |
|              |                           |                                                                                                                                                                     | 1                                                                                                                                                                                                                      | 1       | 1        | 1000Hz                                                                  |  |  |  |  |  |  |  |
|              | 06                        |                                                                                                                                                                     |                                                                                                                                                                                                                        |         |          | is bit is set during gain calibration; reset during offset calibration. |  |  |  |  |  |  |  |
|              | 07                        |                                                                                                                                                                     | ation clo<br>calibrati                                                                                                                                                                                                 |         | s bit mu | st be set to 1 to prepare for a calibration cycle; then reset to 0 to   |  |  |  |  |  |  |  |
|              | 08-15 (10-17)             | Calibration mask – The channel, or channels, to be calibrated will have the correct mask bit set.<br>Bit 8 corresponds to channel 0, bit 9 to channel 1, and so on. |                                                                                                                                                                                                                        |         |          |                                                                         |  |  |  |  |  |  |  |

Figure 6-93. 1794-IR8 Write Word 0

#### **Hardware First Notch Filter**

| A/D Filter First Notch<br>Frequency<br>(effective resolution) | 10Hz<br>(16-bits)  | 25Hz<br>(16-bits)               | 50Hz<br>(16-bits) | 60Hz<br>(16-bits) | 100Hz<br>(16-bits) | 250Hz<br>(13-bits) | 500Hz<br>(11-bits) | 1000Hz<br>(9-bits) |  |  |  |  |
|---------------------------------------------------------------|--------------------|---------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--|--|--|--|
| Number of channels scanned                                    |                    | System Throughput (in ms and s) |                   |                   |                    |                    |                    |                    |  |  |  |  |
| 1                                                             | 325                | 145                             | 85                | 75                | 55                 | 37                 | 31                 | 28                 |  |  |  |  |
| 2                                                             | 650                | 290                             | 170               | 150               | 110                | 74                 | 62                 | 56                 |  |  |  |  |
| 3                                                             | 975                | 435                             | 255               | 225               | 165                | 111                | 93                 | 84                 |  |  |  |  |
| 4                                                             | 1.3s               | 580                             | 340               | 300               | 220                | 148                | 124                | 112                |  |  |  |  |
| 5                                                             | 1.625s             | 725                             | 425               | 375               | 275                | 185                | 155                | 140                |  |  |  |  |
| 6                                                             | 1.95s              | 870                             | 510               | 450               | 330                | 222                | 186                | 168                |  |  |  |  |
| 7                                                             | 2.275s             | 1.015s                          | 595               | 525               | 385                | 259                | 217                | 196                |  |  |  |  |
| 8                                                             | 2.60s <sup>1</sup> | 1.16s                           | 680               | 600               | 440                | 296                | 248                | 224                |  |  |  |  |

Figure 6-94. 1794-IT8 Hardware First Notch Filter

| Word         | Dec. Bits<br>(Octal Bits) |       |          |         |           |        | Description                                          |
|--------------|---------------------------|-------|----------|---------|-----------|--------|------------------------------------------------------|
| Write Word 1 | 00-03                     | Chann | el 0 RTD | Туре    |           |        |                                                      |
|              |                           | Bit   | 03       | 02      | 01        | 00     | RTD Type – Range                                     |
|              |                           |       | 0        | 0       | 0         | 0      | Resistance (default)                                 |
|              |                           |       | 0        | 0       | 0         | 1      | No sensor connected - do not scan                    |
|              |                           |       | 0        | 0       | 1         | 0      | 100 ohm Pt $\alpha$ = 0.00385 Euro (–200 to +870°C)  |
|              |                           |       | 0        | 0       | 1         | 1      | 100 ohm Pt $\alpha$ = 0.003916 U.S. (–200 to +630°C) |
|              |                           |       | 0        | 1       | 0         | 0      | 200 ohm Pt $\alpha$ = 0.00385 Euro (–200 to +630°C)  |
|              |                           |       | 0        | 1       | 0         | 1      | 500 ohm Pt $\alpha$ = 0.00385 Euro (-200 to +630°C)  |
|              |                           |       | 0        | 1       | 1         | 0      | Reserved                                             |
|              |                           |       | 0        | 1       | 1         | 1      | 10 ohm Copper (-200 to +260°C)                       |
|              |                           |       | 1        | 0       | 0         | 0      | 120 ohm Nickel (-60 to +250°C)                       |
|              |                           |       | 1        | 0       | 0         | 1      | 100 ohm Nickel (-60 to +250°C)                       |
|              |                           |       | 1        | 0       | 1         | 0      | 200 ohm Nickel (-60 to +250°C)                       |
|              |                           |       | 1        | 0       | 1         | 1      | 500 ohm Nickel (-60 to +250°C)                       |
|              |                           |       | 1        | 1       | 0         | 0      | Reserved                                             |
|              |                           |       |          |         | Reserve   | -      |                                                      |
|              | 04-07                     |       | el 1 RTD | ,, ,    |           |        |                                                      |
|              | 08-11                     |       | el 2 RTD | ,, ,    |           |        |                                                      |
|              | 12-15                     |       | el 3 RTD | 71 . (  |           | ,      |                                                      |
| Write Word 2 | 00-03                     |       |          | 21      |           |        | I, bits 00-03)                                       |
|              | 04-07                     |       |          | ,, ,    |           |        | I, bits 00-03)                                       |
|              | 08-11                     |       |          | ,, ,    |           |        | I, bits 00-03)                                       |
|              | 12-15                     | Chann | el 7 RTD | Type (s | see write | word 1 | I, bits 00-03)                                       |

Figure 6-95. 1794-IT8 Write Word 1 and 2

In this example, the first read block is set up to monitor the underrange and overrange bits on the module. The second read block monitors the Powerup bit, Critical Error bits, Calibration Range bit, Calibration Done bit, and Calibration Bad bit. The first write word (0) sets the module for °F units, 100 Hz filtering, and no calibration. The second write word (1) sets the module for 100 ohm Pt Euro RTD on channels 0, 1, 2, and 3. The third write word (2) sets the module for 100 ohm Pt Euro RTD for channels 4, 5, 6, and 7. See Figure 6-96 for GAP read and write block example.

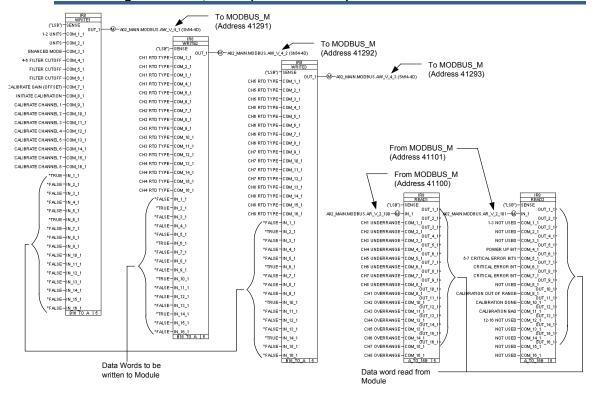



Figure 6-96. Example of 1794-IR8 Read and Write GAP Blocks

To read the analog input words for the 1794-IR8 module, DIVIDE blocks were used. According to the 1794-IR8 manual, the RTD module's output must be scaled to one tenth the value read by the 3170-MBS interface module. From the 1794-IR8 Input Scaling, it can be seen that the 100 ohm Pt Euro RTD range is – 328 to 1598 °F. The output of the DIVIDE block will be in engineering units (°F). See Figure 6-97 for Input scaling for RTDs.

# Input Scaling

| Range           | Degrees         | Counts          | Maximum<br>Resolution |
|-----------------|-----------------|-----------------|-----------------------|
| 100 ohm Pt Euro | -328 to +1598°F | -3280 to +15980 | 0.1ºF                 |
| 100 ohm Pt U.S  | -328 to +1166°F | -3280 to +11660 | 0.1°F                 |
| 200 ohm Pt Euro | -328 to +1166°F | -3280 to +11660 | 0.1°F                 |
| 500 ohm Pt Euro | -328 to +1166°F | -3280 to +11660 | 0.1ºF                 |
| 100 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1ºF                 |
| 120 ohm Nickel  | -112 to +500°F  | -1120 to +5000  | 0.1°F                 |
| 200 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1°F                 |
| 500 ohm Nickel  | -76 to +482°F   | -760 to +4820   | 0.1°F                 |
| 10 ohm Copper   | -328 to +500°F  | -3280 to +5000  | 0.1°F                 |

Note: Temperature data has an implied decimal point 1 space to the right of the last digit. (divide by 10). For example, a readout of 1779° would actually be 177.9°.

Figure 6-97. 1794-IR8 Input Scaling

See Figure 6-98 for example of 1794-IR8 GAP Analog Read Blocks.

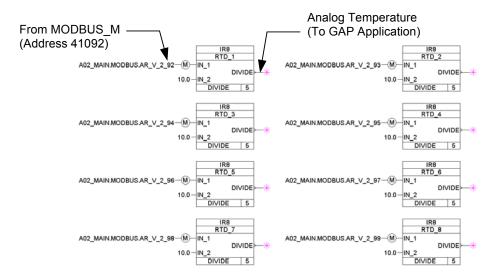



Figure 6-98. Example of 1794-IR8 GAP Analog Read Blocks

# **Automation Direct Terminator I/O Example**

#### **Automation Direct Terminator I/O Modbus Configuration**

MODBUS is an application layer messaging protocol, at level 7, as defined in the OSI (Open System Interconnection) model. It provides client/server communication between devices connected on different types of buses or networks. It is a request/reply protocol and offers services specified by function codes. MODBUS function codes are elements of MODBUS request/reply PDUs (Protocol Data Unit).

Modicon developed the Modbus addressing scheme around the data table and I/O structure in Modicon PLCs. Terminator I/O is a modular system which combines the functions of terminal blocks and I/O modules for distributed I/O. Each Terminator I/O system has the following components: a Power Supply, a Base Controller, and one or more I/O Module(s). Terminator I/O systems can contain up to 16 I/O modules per slave (node). Each slave (node) system can be divided into one row of base I/O plus two rows of local expansion I/O using a base expansion cable.

In this example, one T1K-MODBUS adapter and two power supplies from Automation Direct are interfaced with seven terminal base units with installed Terminator I/O modules, forming a Terminator I/O system.

The T1K-MODBUS is a Network Interface Adapter that communicates between the Terminator I/O modules backplane and the AtlasPC/Master across a serial RS-232 connection. The T1K-MODBUS module is a slave device to the AtlasPC control, and is a master controller of the Terminator I/O modules. The I/O data exchange occurs as follows. Output data is sent from the AtlasPC control across the RS-232 connection to the T1K-MODBUS adapter. The network interface adapter then automatically transfers the data across the Terminator I/O backplane to the output modules. Inputs from the input modules are collected by the network interface adapter via the backplane and sent across the RS-232 connection to the AtlasPC control.

In order to simplify the nomenclature used in creating the GAP application, certain naming conventions were changed with respect to the manufacturer's naming convention. In this example, Woodward refers to the node address as the Group address. The T1K-MODBUS Group address, (Node address), is set by two rotary switches located on the front of the T1K-MODBUS module. In this example the address is set to 01.

The Automation Direct Terminator I/O system requires DIN rail mounted power supplies to power the individual I/O module over the Terminator I/O back plane. In this example, a 120 Vac unit (T1K\_01AC) was used to power the Discrete I/O modules and a 24 Vdc unit (T1K-01DC was used to power the Analog I/O modules.

In this example, the power supplies were also used to generate the needed current for the external power requirements of the circuits. See Figure 6-99 for Automation Direct Terminator I/O configuration layout.

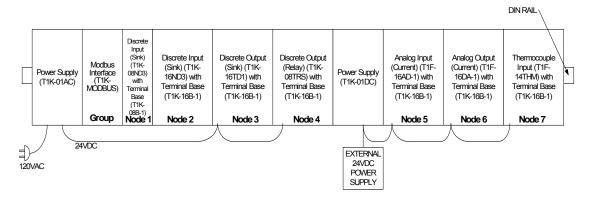



Figure 6-99. Automation Direct Terminator I/O Configuration

#### Address Spreadsheet

The I/O map for a module is divided into read words and write words. Read words consist of input and status words, and write words consist of output and configuration words. The number of read words or write words can be 0 or more.

To keep track of the addressing for all of the reads and writes, an address spreadsheet is very useful. This address spreadsheet can be derived from memory maps in the I/O modules User Manual and the network interface module (head) T1K-MODBUS User Manual. These memory maps define which addresses to allocate within the Address Spreadsheet. Not all of the addresses allocated to each module are written to or read from. Some addresses are either not used or reserved. See specific I/O module memory maps for detail functionality used to define the GAP reads and writes. The Automation Direct Terminator I/O system addresses its discrete I/O by bits and analog I/O by words. See Table 6-6 for the address spreadsheet for this example.

| Module     | Byte # | Read Address Bits | Write Address Bits |
|------------|--------|-------------------|--------------------|
| T1K-MODBUS | 0      | None              | None               |
| T1K-08ND3  | 0      | 10000-10008       | None               |
| T1K-16ND3  | 0      | 10009-10016       | None               |
|            | 1      | 10017-10024       | None               |
| T1K-16TD1  | 0      | None              | 00000-00008        |
|            | 1      | None              | 00009-00016        |
| T1K-08TRS  | 0      | None              | 00017-00024        |
| Module     | Word # | Read Addr. Words  | Write Addr. Words  |
| T1F-16AD-1 | 0      | 30001             | None               |
|            | 1      | 30002             |                    |
|            | 2      | 30003             |                    |
|            | 3      | 30004             |                    |
|            |        |                   |                    |
|            |        |                   |                    |
|            |        |                   |                    |
|            | 29     | 30030             |                    |
|            | 30     | 30031             |                    |
|            | 31     | 30032             | ]                  |
| T1F-16DA-1 | 0      | None              | 40001              |
|            | 1      |                   | 40002              |
|            | 2      |                   | 40003              |
|            | 3      |                   | 40004              |
|            | •      |                   |                    |
|            | •      |                   |                    |
|            |        |                   |                    |
|            | 29     |                   | 40030              |
|            | 30     |                   | 40031              |
|            | 31     |                   | 40032              |
| T1F-14THM  | 0      | 30033             | None               |
|            | 1      | 30034             |                    |
|            | 2      | 30035             |                    |
|            | 3      | 30036             | ]                  |
|            |        |                   | ]                  |
|            |        |                   | ]                  |
|            |        |                   |                    |
|            | 29     | 30062             | ]                  |
|            | 30     | 30063             |                    |
|            | 31     | 30064             |                    |

Table 6-6. Modbus Word Address Spreadsheet

Use the following documents from the manufacturer to obtain the Memory Maps and related information.

Module Document P/N I/O modules T1K-INST-M

Modbus Interface T1K-MODBUS-M

#### **Nomenclature**

When creating a new GAP application, it is important to establish a well organized block naming convention up front. Once done, it is easier to find specific functions and I/O within a large GAP application. Though not shown in this example, the Category and Block Names could follow similar nomenclature rules to those shown in Chapter 1 (Profibus).

### **GAP Application**

In order to communicate between the Atlas serial RS-232 port and the T1K-MODBUS, a MOD\_PORT and MODBUS\_M block must be defined in GAP. The MOD\_PORT block defines the serial communications baud rate, stop, parity, and type of interface (RS-232, 422, 485). The MODBUS\_M block defines the addressing for Modbus communications between the Atlas and the distributed I/O. Based on the Address Spreadsheet, this block can be customized to read and write to appropriate addresses. See Figure 6-100 for MODBUS\_M/MOD\_PORT setup example.

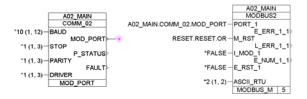



Figure 6-100. MODBUS M Block Example

The E\_ERR\_1\_x output field on the MODBUS\_M block is used to display Exception Error on PORT\_1 per RPTx. It latches TRUE when an exception error is detected. E\_NUM\_1\_X (hidden) displays the error number. See Table 6-7 for exception errors.

| CODE                                      | NAME                                       | MEANING                                                                                                                                                    |  |  |  |  |  |  |
|-------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| The following are generated by the slave. |                                            |                                                                                                                                                            |  |  |  |  |  |  |
| 00                                        | NO ERROR                                   | Error free                                                                                                                                                 |  |  |  |  |  |  |
| 01                                        | ILLEGAL<br>FUNCTION                        | Message function received is not an allowable action for addressed slave. (Unsupported or illegal function code).                                          |  |  |  |  |  |  |
| 02                                        | ILLEGAL DATA<br>ADDRESS                    | Address referenced in data field is not an allowable address for the addressed slave location. (Master requested data which is not configured from slave). |  |  |  |  |  |  |
| 03                                        | ILLEGAL DATA<br>VALUEA                     | mount of data requested from slave was too large for slave to return in a single response.                                                                 |  |  |  |  |  |  |
| The fo                                    | The following are generated by the master. |                                                                                                                                                            |  |  |  |  |  |  |
| 09                                        | CHECKSUM<br>ERROR                          | Error in checksum in message from slave. Can indicate link quality and/or noise problems.                                                                  |  |  |  |  |  |  |
| 10                                        | GARBLED<br>MESSAGE                         | Data received from the slave, but is too short to be a valid Modbus message/response.                                                                      |  |  |  |  |  |  |
| 20                                        | UNSOLICITED<br>RESPONSE                    | Unsolicited message received from slave.                                                                                                                   |  |  |  |  |  |  |
| 21                                        | BAD FC IN<br>RESPONSE                      | Slave returned a message with a different function code from the command sent.                                                                             |  |  |  |  |  |  |
| 22                                        | BAD ADD IN<br>RESPONSE                     | Slave returned a message with a different address from the command sent.                                                                                   |  |  |  |  |  |  |
| 23                                        | NO SLAVE<br>RESPONSE                       | No response from slave.                                                                                                                                    |  |  |  |  |  |  |
| 24                                        | MOE/CODER<br>ERROR                         | MOE/CODER error.                                                                                                                                           |  |  |  |  |  |  |
| 25                                        | INTERNAL SYS<br>ERROR                      | Internal system error.                                                                                                                                     |  |  |  |  |  |  |

Table 6-7. MODBUS\_M Exception Errors

The L\_ERR\_1\_x is used to display Link Error on PORT\_1 for RPTx. It goes TRUE when the slave fails to answer a data request. If a response isn't received in TIME\_OUT\_x seconds, the request is retried. If a response isn't received in TIME\_OUT\_x seconds after the request is retried, then this output is set true.

While waiting for a response from one slave, the master is not communicating with the other slaves. So, if multiple slaves fail at the same time (i.e. broken cable), the L\_ERR\_1\_x for the first slave attempted will occur at 2 x TIME\_OUT\_x. But, the second L\_ERR\_1\_x won't go true until 2 x TIME\_OUT\_x after the first failure because no communications are attempted with that slave until after the first has timed out.

In this example, the TIK-MODBUS adapter is configured for the 584 / 984 Addressing mode (Dip switch 7). See Figure 6-101 for the full T1K-MODBUS adapter addressing table.

| Modbus           |                        | T1K-MODBUS      |                    |                      |                                 |  |  |
|------------------|------------------------|-----------------|--------------------|----------------------|---------------------------------|--|--|
| Dat              | а Туре                 | Range (Decimal) | Points             |                      | Memory Type                     |  |  |
|                  | Coil                   | 1 – 1024        | 1024               |                      | Discrete Output                 |  |  |
| ,                | OII                    | 1025 – 9999     | -                  |                      | not supported                   |  |  |
|                  | 4                      | 10001 – 11024   | 1024               |                      | Discrete Input                  |  |  |
| "                | iput                   | 11025 – 19999   | -                  |                      | not supported                   |  |  |
| Modbus Data Type |                        | V Memory Range  |                    |                      |                                 |  |  |
| Modbus           | Data Type              | Range (Decimal) | Words<br>(16– bit) | Channel<br>(32– bit) | Memory Type                     |  |  |
|                  | Analog Input           | 30001 – 30128   | 128                | 64                   | Analog Input Register           |  |  |
| I Bouleton       | Input Register         | 30129 – 38999   | -                  | -                    | not supported                   |  |  |
| Input Register   | Bit Input Register     | 30201 – 30264   | 64                 | -                    | Discrete Input Bit<br>Register  |  |  |
|                  | Input Register         | 39129 – 39999   |                    |                      | not supported                   |  |  |
|                  | Analog output          | 40001 – 40128   | 128 64             |                      | Analog Output<br>Register       |  |  |
|                  | Hold Register          | 40129 – 40200   | -                  | -                    | not supported                   |  |  |
| Hold Register    | Bit Output<br>Register | 40201 – 40264   |                    |                      | Discrete Output Bit<br>Register |  |  |
|                  | Hold Register          | 40265 – 49000   | -                  | -                    | not supported                   |  |  |
|                  | Hold Register          | 49001 – 49128   | 128                | -                    | Special Register                |  |  |
|                  | Hold Register          | 49129 – 49999   | -                  | -                    | not supported                   |  |  |

Figure 6-101. T1K-MODBUS Adapter Addressing Table

In the RPT window for the MODBUS\_M block, the BR\_F\_CODE and AR\_F\_CODE fields specify the Boolean and Analog read Function Codes for Modbus. The Boolean Read Function Code input defines the Boolean read and write addresses as follows:

```
1 = 00001-0FFFF Input Coils (Boolean READ/WRITE)
2 = 10001-1FFFF Input Status (Boolean READ ONLY)
```

The Analog Read Function Code input defines the Analog read and write addresses as follows:

```
3 = 40001-4FFFF Holding Registers (Analog READ/WRITE)
4 = 30001-3FFFF Input Registers (Analog READ ONLY)
```

By setting the BR\_F\_CODE to 2 and the AR\_F\_CODE field to 4 (defaults), the MODBUS\_M block will access the following addresses as specified by the 584 / 984 Addressing mode of the T1K-MODBUS adapter:

```
1 – 1024 Discrete Outputs
10001 – 11024 Discrete Inputs
30001 – 30128 Analog Input Registers
30201 – 30264 Bit Input Registers
40001 – 40128 Analog Output Registers
40201 – 40264 Bit Output Registers
```

The S\_ADD\_1 field must agree with the Group or Node address for the T1K-MODBUS adapter. In this example, the address is set to 01 which matches the two rotary switch settings on the adapter. See Figure 6-102 for example of MODBUS\_M repeat fields.

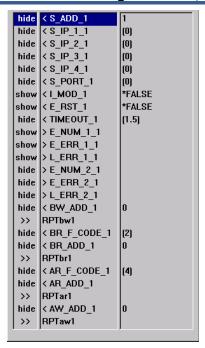



Figure 6-102. MODBUS M Block RPT Example

Within the MODBUS\_M RPT window, there are four repeats (RPTbw1, RPTbr1, RPTar1, and RPTaw1). Each one of these RPT fields opens another window which displays the addresses assigned for that particular RPT. See specific module sections below for memory map function assignment. Example for the T1K-08ND3 module bits (BR\_V\_1\_1): since the starting address is 10000, the BR\_F\_CODE = 2. The BR\_ADD\_1 offset is 0. Therefore the T1K-08ND3 module bit (BR\_V\_1\_1) has an address of 10000 + 0 + 1 = 10001. All of the addresses specified in the address spreadsheet are mapped into the MODBUS\_M block by applying this formula. See Figures 6-103, 6-104, 6-105, and 6-106 for all read/write address windows. Figure 6-107 shows the write addresses for the discrete output modules (T1K-16TD1 and T1K-08TRS), addresses 00001 to 00024.

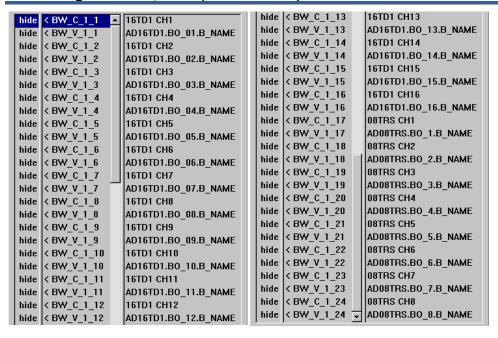



Figure 6-103. MODBUS\_M Block Boolean Write RPT Example

Figure 6-104 shows all of the used read input addresses for Discrete Input modules (T1K-08ND3 and T1K-16ND3), addresses 10001 to 10024.

| hide | < BR C 1 1 ▲ | 08ND3 CH1 | hide | < BR_C_1_9                | 16ND3 CH1 | hide | < BR_C_1_17      | 16ND3 CH9  |
|------|--------------|-----------|------|---------------------------|-----------|------|------------------|------------|
| hide | > BR V 1 1   |           | hide | > BR_V_1_9                |           | hide | > BR_V_1_17      |            |
| hide | < BR D 1 1   | (FALSE)   | hide | < BR_D_1_9                | (FALSE)   | hide | < BR_D_1_17      | (FALSE)    |
| hide | < BR C 1 2   | 08ND3 CH2 | hide | < BR_C_1_10               | 16ND3 CH2 | hide | < BR_C_1_18      | 16ND3 CH10 |
| hide | > BR V 1 2   |           | hide | > BR_V_1_10               |           | hide | > BR_V_1_18      |            |
| hide | < BR D 1 2   | (FALSE)   | hide | < BR_D_1_10               | (FALSE)   | hide | < BR_D_1_18      | (FALSE)    |
| hide | < BR C 1 3   | 08ND3 CH3 | hide | < BR_C_1_11               | 16ND3 CH3 | hide | < BR_C_1_19      | 16ND3 CH11 |
| hide | > BR V 1 3   |           | hide | > BR_V_1_11               |           | hide | > BR_V_1_19      |            |
| hide | < BR D 1 3   | (FALSE)   | hide | < BR_D_1_11               | (FALSE)   | hide | < BR_D_1_19      | (FALSE)    |
| hide | < BR_C_1_4   | 08ND3 CH4 | hide | < BR_C_1_12               | 16ND3 CH4 | hide | < BR_C_1_20      | 16ND3 CH12 |
| hide | > BR_V_1_4   |           | hide | > BR_V_1_12               |           | hide | > BR_V_1_20      |            |
| hide | < BR_D_1_4   | (FALSE)   | hide | BR_D_1_12                 | (FALSE)   | hide | < BR_D_1_20      | (FALSE)    |
| hide | < BR_C_1_5   | 08ND3 CH5 | hide | <pre>&lt; BR_C_1_13</pre> | 16ND3 CH5 | hide | < BR_C_1_21      | 16ND3 CH13 |
| hide | > BR V 1 5   |           | hide | > BR_V_1_13               |           | hide | > BR_V_1_21      |            |
| hide | < BR D 1 5   | (FALSE)   | hide | <pre>&lt; BR_D_1_13</pre> | (FALSE)   | hide | < BR_D_1_21 →    | (FALSE)    |
| hide | < BR C 1 6   | 08ND3 CH6 | hide | <pre>&lt; BR_C_1_14</pre> | 16ND3 CH6 | hide | < BR_C_1_22      | 16ND3 CH14 |
| hide | > BR V 1 6   |           | hide | > BR_V_1_14 —             |           | hide | > BR_V_1_22      |            |
| hide | < BR D 1 6   | (FALSE)   | hide | < BR_D_1_14               | (FALSE)   | hide | < BR_D_1_22      | (FALSE)    |
| hide | < BR C 1 7   | 08ND3 CH7 | hide | < BR_C_1_15               | 16ND3 CH7 | hide | < BR_C_1_23      | 16ND3 CH15 |
| hide | > BR V 1 7   |           | hide | > BR_V_1_15               |           | hide | > BR_V_1_23      |            |
|      | < BR_D_1_7   | (FALSE)   |      |                           | (FALSE)   | hide | < BR_D_1_23      | (FALSE)    |
| hide | < BR_C_1_8   | 08ND3 CH8 | hide | < BR_C_1_16               | 16ND3 CH8 | hide | < BR_C_1_24      | 16ND3 CH16 |
|      | > BR V 1 8   |           | hide | > BR_V_1_16               |           | hide | > BR_V_1_24      |            |
|      | < BR_D_1_8   | (FALSE)   | hide | < BR_D_1_16               | (FALSE)   | hide | < BR_D_1_24    ▼ | (FALSE)    |

Figure 6-104. MODBUS M Block Boolean Read RPT Example

Figure 6-105 shows all of the used read input addresses for analog Input modules (T1F-16AD-1 and T1F-14THM), addresses 30001 to 30060.



The Automation Direct analog modules use two address words per channel. The first word is used, and the second is not used. The unused address must be accounted for when addressing the modules and therefore requires each channel to increment by two addresses. Example: 2X16 addresses for the T1F-AD-1 module + 2X14 addresses for the T1F-14THM module = 60 addresses total.




Figure 6-105. MODBUS M Block Analog Read RPT Example

Figure 6-106 shows all of the used write output addresses for the analog output module (T1F-16DA-1), addresses 40001 to 40032.

Note: The Automation Direct analog modules use two address words per channel. The first word is used, and the second is not used. The un-used address must be accounted for when addressing the modules and therefore requires each channel to increment by two addresses.

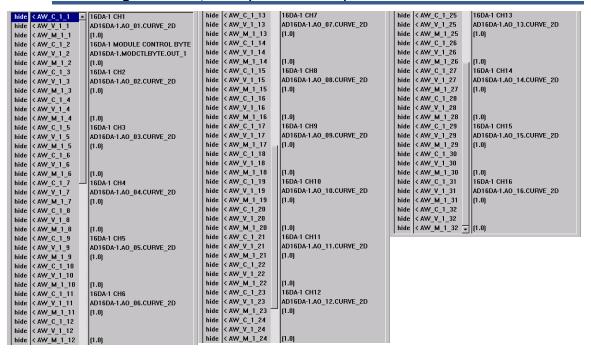




Figure 6-106. MODBUS\_M Block Analog Write RPT Example

# Automation Direct Modbus Interface (T1K-MODBUS) Module



In this example, the T1K-MODBUS adapter was set up for RS-232 communications. The T1K-MODBUS RS-232 communications setup must be configured manually with DIP switches located on the Adapter. These DIP switches must agree with the settings specified in the MOD\_PORT and MODBUS\_M blocks. The MOD\_PORT block uses 8 data bits per word. The settings for this example are shown in Figure 6-107, T1K-MODBUS Dip Switch Settings.

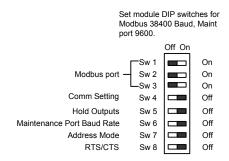



Figure 6-107. T1K-MODBUS Dip Switch Settings

This configures the module for 38,400 Baud rate (Sw1-3), default communication setting mode (Sw4), hold outputs off (Sw5), 9600 bps for RJ12 connection (Sw6), 584/984 Modbus slave addressing mode (Sw7), and disable the CTS pin on the RJ12 connector (Sw8). Because the default communications mode is selected, the RJ12 connection is not used. The default communications mode is set for 8 bit communications data, 1 start bit, 1 stop bit, odd parity, 1second communication timeout, and 0 ms RTS Delay time. The MOD\_PORT GAP block settings must match these communication settings when configured.

The T1K-MODBUS adapter will support RS-232, RS-422, and RS-485 connections. In this example, the connection between the AtlasPC control communications port (Comm 02) and the T1K-MODBUS adapter was wired as a RS-232 connection. See Figure 6-108 for example of RS-232 connection.

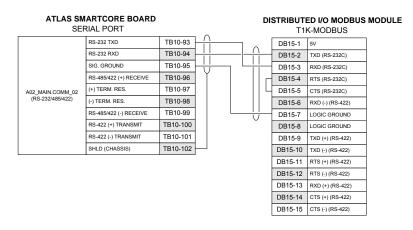
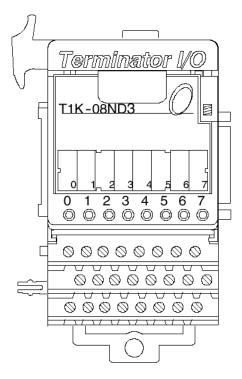




Figure 6-108. Automation Direct Modbus RS-232 Serial Connection

The Automation Direct T1K-MODBUS adapter doesn't reserve any read or write addresses for status words as the Allen-Bradley unit did.

#### Automation Direct Discrete Input (Sink) (T1K-08ND3) Module



The T1K-08ND3 can be configured for sink or source detection with internal or external power. In this example, the unit is configured for sink mode with external power. This configuration is set up with jumpers located on the module. See Figure 6-109 for T1K-08ND3 Sink/External Power Configuration.

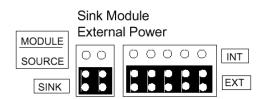



Figure 6-109. T1K-08ND3 Sink/External Power Configuration

See Figure 6-110 for example of T1K-08ND3 module wiring.

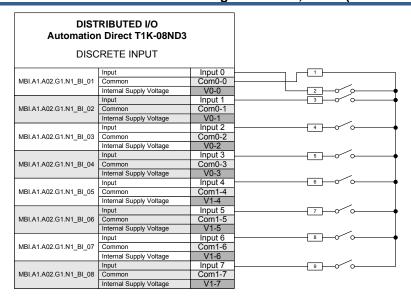



Figure 6-110 Example of T1K-08ND3 Module Wiring

The T1K-08ND3 memory map indicates that there is one read byte (8 bits) address and no write addresses. See Figure 6-111 for memory map of Automation Direct T1K-08ND3 Discrete input module.

| Memory Map of 8-Point Discrete Input Modules<br>(T1K–08NA–1 and T1K–08ND3) |    |    |    |    |    |    |    |    |             |  |  |
|----------------------------------------------------------------------------|----|----|----|----|----|----|----|----|-------------|--|--|
| Decimal Bit                                                                | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | Size        |  |  |
| Octal Bit                                                                  | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | Size        |  |  |
|                                                                            | X7 | X6 | X5 | X4 | Х3 | X2 | X1 | X0 | Read Byte 1 |  |  |
| Not Used Write Byte 1                                                      |    |    |    |    |    |    |    |    |             |  |  |

Figure 6-111. T1K-08ND3 Memory Map

The Automation Direct T1K-08ND3 doesn't have any filter or other options to set, therefore there are no write addresses assigned. In this example, each bit is displayed using a B\_NAME block. Each block is connected to the specific address in the MODBUS\_M block RPT window shown above. See Figure 6-112 for example of T1K-08ND3 Read GAP blocks.

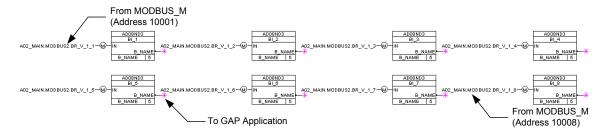
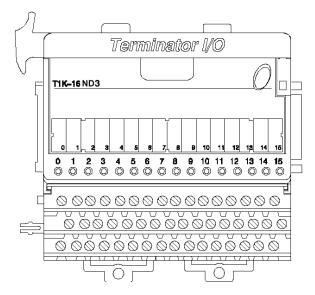




Figure 6-112. Example of T1K-08ND3 Read GAP Blocks

## Automation Direct Discrete Input (Sink) (T1K-16ND3) Module



The T1K-16ND3 can be configured for sink or source detection with internal or external power. In this example, the unit is configured for sink mode with external power. This configuration is set up with jumpers located on the module. See Figure 6-113 for T1K-16ND3 Sink/External Power Configuration.

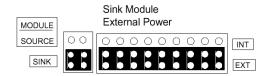



Figure 6-113. T1K-16ND3 Sink/External Power Configuration

See Figure 6-114 for example of T1K-16ND3 module wiring.

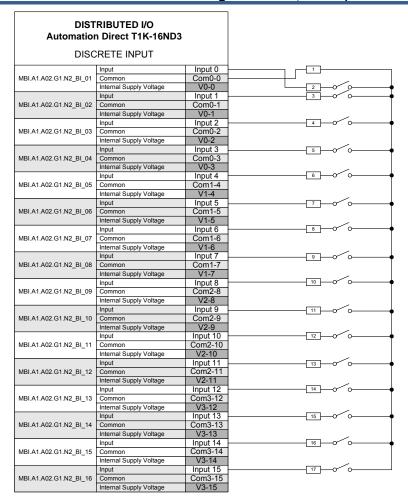



Figure 6-114 Example of T1K-16ND3 Module Wiring

The T1K-16ND3 memory map indicates that there are two read byte (16 bits) addresses and no write addresses. See Figure 6-115 for memory map of Automation Direct T1K-16ND3 Discrete input module.

| Memory Map of 16-Point Discrete Input Modules<br>(T1K-16NA-1 and T1K-16ND3) |     |     |     |     |     |     |     |     |             |  |  |
|-----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------|--|--|
| Decimal Bit                                                                 | 07  | 06  | 05  | 04  | 03  | 02  | 01  | 00  | Size        |  |  |
| Octal Bit                                                                   | 07  | 06  | 05  | 04  | 03  | 02  | 01  | 00  | Size        |  |  |
|                                                                             | X7  | X6  | X5  | X4  | Х3  | X2  | X1  | X0  | Read Byte 1 |  |  |
|                                                                             | X17 | X16 | X15 | X14 | X13 | X12 | X11 | X10 | Read Byte 2 |  |  |
| Not Used Write Byte 1                                                       |     |     |     |     |     |     |     |     |             |  |  |

Figure 6-115. T1K-16ND3 Memory Map

The Automation Direct T1K-16ND3 doesn't have any filter or other options to set, therefore there are no write addresses assigned. In this example, each bit is displayed using a B\_NAME block. Each block is connected to the specific address in the MODBUS\_M block RPT window shown above. See Figure 6-116 for example of T1K-16ND3 Read GAP blocks.

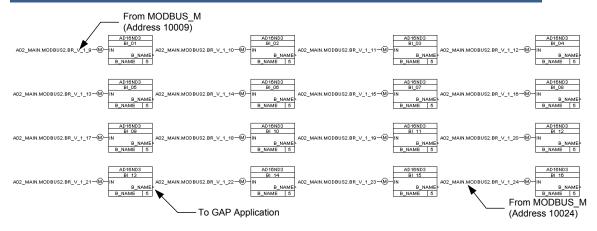
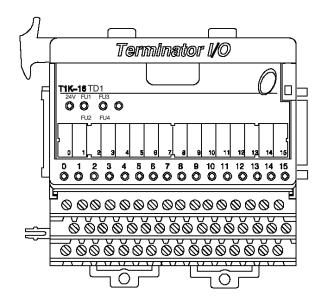




Figure 6-116. Example of T1K-16ND3 Read GAP Blocks

# Automation Direct Discrete Output (Sink) (T1K-16TD1) Module



In this example the T1K-16ND3 was connected to a Woodward 16 channel relay module. See Figure 6-117 for example of T1K-16ND3 module wiring.

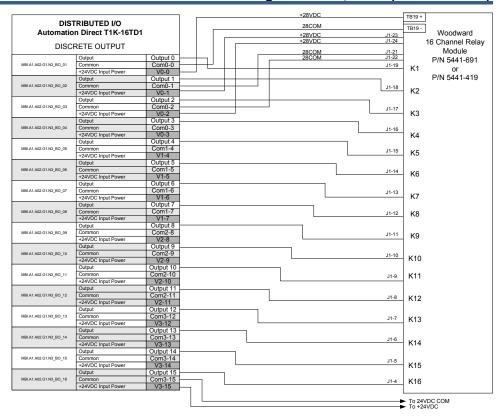



Figure 6-117. Example of T1K-16ND3 Module to Relay Module Wiring

The T1K-16TD1 memory map indicates that there are no read byte (8 bits) addresses and two write byte (16 bits) addresses. See Figure 6-118 for memory map of Automation Direct T1K-16TD1 Discrete Output module.

| Memory Map of 16-Point Discrete Input Modules<br>(T1K–16TA, T1K–16TD1, T1K–16TD2 and T1K–16TR) |     |     |       |     |     |     |     |     |              |  |  |
|------------------------------------------------------------------------------------------------|-----|-----|-------|-----|-----|-----|-----|-----|--------------|--|--|
| Decimal Bit                                                                                    | 07  | 06  | 05    | 04  | 03  | 02  | 01  | 00  | Size         |  |  |
| Octal Bit                                                                                      | 07  | 06  | 05    | 04  | 03  | 02  | 01  | 00  | Size         |  |  |
|                                                                                                |     |     | Not U | sed |     |     |     |     | Read Byte 1  |  |  |
|                                                                                                | Y7  | Y6  | Y5    | Y4  | Y3  | Y2  | Y1  | Y0  | Write Byte 1 |  |  |
|                                                                                                | Y17 | Y16 | Y15   | Y14 | Y13 | Y12 | Y11 | Y10 | Write Byte 2 |  |  |

Figure 6-118. T1K-16TD1 Module Memory Map

The Automation Direct T1K-16TD1 module doesn't have any status words to read, therefore there are no read addresses assigned. In this example, each bit is written using a B\_NAME block. Each block is connected to the specific address in the MODBUS\_M block RPT window shown above. See Figure 6-119 for example of T1K-16TD1 write GAP blocks.

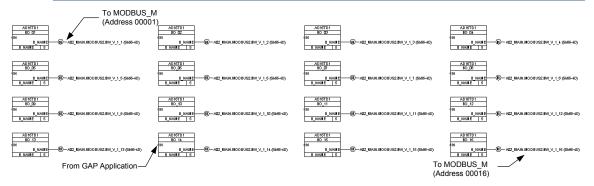
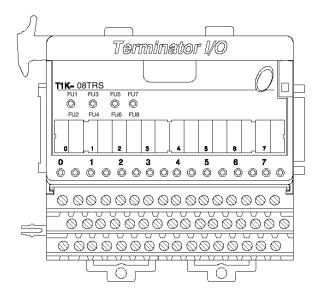




Figure 6-119. Example of T1K-16TD1 GAP Write Blocks

### Automation Direct Relay Output (T1K-08TRS) Module



See Figure 6-120 for example of T1K-08TRS module wiring.

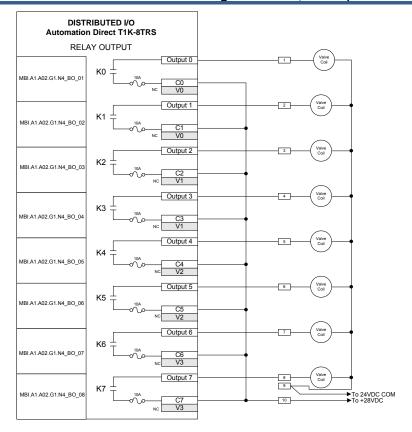



Figure 6-120. Example of T1K-08TRS Module Wiring

The T1K-08TRS memory map indicates that there are no read byte addresses and one write byte (8 bits) address. See Figure 6-121 for memory map of Automation Direct T1K-08TRS Relay Output module.

| Memory Map of 8-Point Discrete Output Modules (T1K-08TA, T1K-08TD1 and T1K-08TR) |    |    |      |    |    |    |    |    |             |  |  |
|----------------------------------------------------------------------------------|----|----|------|----|----|----|----|----|-------------|--|--|
| Decimal Bit                                                                      | 07 | 06 | 05   | 04 | 03 | 02 | 01 | 00 | Size        |  |  |
| Octal Bit                                                                        | 07 | 06 | 05   | 04 | 03 | 02 | 01 | 00 | Size        |  |  |
|                                                                                  |    | No | t Us | ed |    |    |    |    | Read Byte 1 |  |  |
| Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Write Byte 1                                             |    |    |      |    |    |    |    |    |             |  |  |

Figure 6-121. T1K-08TRS Module Memory Map

The Automation Direct T1K-08TRS module doesn't have any status words to read, therefore there are no read addresses assigned. In this example, each bit is written using a B\_NAME block. Each block is connected to the specific address in the MODBUS\_M block RPT window shown above. See Figure 6-122 for example of T1K-08TRS write GAP blocks.

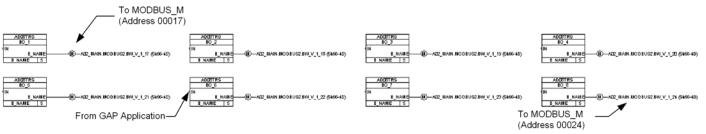
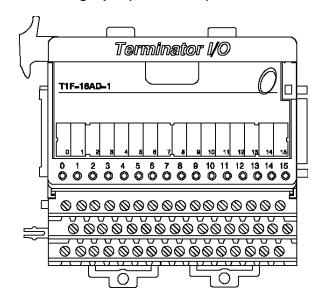




Figure 6-122. Example of T1K-08TRS GAP Write Blocks

#### Automation Direct Analog Input (T1F-16AD-1) Module



In this example, the T1F-16AD-1 is wired with loop powered transducers. See Figure 6-123 for example of T1F-16AD-1 module wiring.

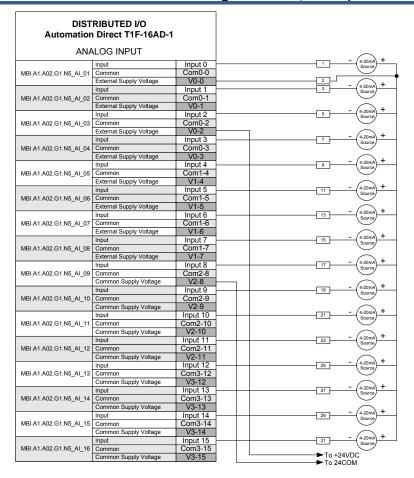



Figure 6-123. Example of T1F-16AD-1 Module Wiring

The T1F-16AD-1 memory map indicates that there are 64 read byte (32 words) addresses and no write byte addresses. See Figure 6-124 for memory map of Automation Direct T1F-16AD-1 Analog Input module.

Size Read Byte 33 Read Byte 34 Byte35 Byte36 Read Byte 37 Read Byte 38 Byte39 Byte40 Read Byte 41 Read Byte 42 Byte43 Byte44 Read Byte 45 Read Byte 46 Byte47 Byte48 Read Byte 49 Read Byte 50 Byte51 Byte52 Read Byte 53 Read Byte 54 Byte55 Byte56 Read Byte 57 Read Byte 58 Byte59 Byte60 Read Byte 61 Read Byte 62 Byte63 Byte64 Write Byte 1

| Mam         |                                     | <b>.</b>                            | £ 40  | Cha   |              | Anal   | on le |      | Module       | Decimal Bit | 0.7                     | 00  | 0.E   | 04    | 00      | 00     | 04   | Loo |
|-------------|-------------------------------------|-------------------------------------|-------|-------|--------------|--------|-------|------|--------------|-------------|-------------------------|-----|-------|-------|---------|--------|------|-----|
| Memo        | ory N                               | лар с                               |       |       | nnei<br>-16A |        | og ir | iput | Module       | Octal Bit   | 07                      | 06  | 05    | 04    | 03      | 02     | 01   | 00  |
| Decimal Bit | 07                                  | 06                                  | 05    | 04    | 03           | 02     | 01    | 00   |              | Octal bit   | 07                      |     |       |       |         | anne   |      | 00  |
| Octal Bit   | 07                                  | 06                                  | 05    | 04    | 03           | 02     | 01    | 00   | Size         |             | ⊢                       |     |       |       |         | anne   |      |     |
|             |                                     | Ar                                  | nalog | Valu  | ie Ch        | anne   | 11    |      | Read Byte 1  |             | ⊢                       | MI  | ialog |       | used    | anne   | 13   |     |
|             | Т                                   | Analog Value Channel 1              |       |       |              |        |       |      | Read Byte 2  |             | ⊢                       | re  | eon   |       |         | ire us |      |     |
|             | Т                                   |                                     | -     | not   | used         |        |       |      | Byte3        |             | ⊢                       |     |       |       | - 14-44 | annel  |      |     |
|             | Т                                   | re                                  | serv  | ed fo | r futu       | ıre u: | se    |      | Byte4        | <u> </u>    | ⊢                       |     |       |       |         | annel  |      |     |
|             | Г                                   | Ar                                  | nalog | Valu  | ie Ch        | anne   | 12    |      | Read Byte 5  |             | $\vdash$                | 741 | aiug  |       | used    |        | 10   |     |
|             | Т                                   | Analog Value Channel 2              |       |       |              |        |       |      | Read Byte 6  |             | ⊢                       | re  | eserv |       |         | ire us | ia.  |     |
|             | Г                                   |                                     |       | not   | used         |        |       |      | Byte7        |             | ⊢                       |     |       |       |         | annel  |      |     |
|             |                                     | re                                  | serv  | ed fo | r futu       | ire us | Se    |      | Byte8        |             | ⊢                       |     |       |       |         | annel  |      |     |
|             |                                     | Ar                                  | nalog | Valu  | ie Ch        | anne   | 13    |      | Read Byte 9  |             | $\vdash$                |     |       |       | used    |        |      |     |
|             |                                     | Ar                                  | nalog | Valu  | ie Ch        | anne   | 13    |      | Read Byte 10 |             | $\vdash$                | re  | eserv | ed fo | r futu  | ire us | se . |     |
|             |                                     |                                     |       | not   | used         |        |       |      | Byte11       |             | $\vdash$                | An  | alog  | Value | e Cha   | annel  | 12   |     |
|             |                                     | re                                  | eserv | ed fo | r futu       | ıre us | S0    |      | Byte12       |             | $\vdash$                |     | -     |       |         | annel  |      |     |
|             |                                     | Ar                                  | nalog | Valu  | ie Ch        | anne   | 14    |      | Read Byte 13 |             | not used                |     |       |       |         |        |      |     |
|             | Analog Value Channel 4              |                                     |       |       |              |        |       |      | Read Byte 14 |             | reserved for future use |     |       |       |         |        |      |     |
|             |                                     |                                     |       | not   | used         |        |       |      | Byte15       |             | $\vdash$                | An  | alog  | Value | e Cha   | annel  | 13   |     |
|             |                                     |                                     |       |       | r futu       |        |       |      | Byte16       |             | Т                       | An  | alog  | Value | e Cha   | annel  | 13   |     |
|             |                                     |                                     | - 0   |       | ie Ch        |        |       |      | Read Byte 17 |             | T                       |     |       | not   | used    |        |      |     |
|             |                                     | Ar                                  | nalog |       | ie Ch        |        | 15    |      | Read Byte 18 |             | T                       | re  | eserv | ed fo | r futu  | ire us | e e  |     |
|             | _                                   |                                     |       |       | used         |        |       |      | Byte19       |             |                         | An  | alog  | Value | e Cha   | annel  | 14   |     |
|             | L                                   |                                     |       |       | r futu       |        |       |      | Byte20       |             | Г                       | An  | alog  | Value | e Cha   | annel  | 14   |     |
|             | _                                   |                                     |       |       | ie Ch        |        |       |      | Read Byte 21 |             | Г                       |     |       | not   | used    |        |      |     |
|             | _                                   | Ar                                  | nalog |       | ie Ch        |        | 16    |      | Read Byte 22 |             |                         | re  | eserv | ed fo | r futu  | ire us | e    |     |
|             | ᆫ                                   |                                     |       |       | used         |        |       |      | Byte23       |             |                         | An  | alog  | Value | e Cha   | annel  | 15   |     |
|             | ᆫ                                   |                                     |       |       | r futu       |        |       |      | Byte24       |             |                         | An  | alog  | Value | e Cha   | annel  | 15   |     |
|             | ᆫ                                   | Analog Value Channel 7              |       |       |              |        |       |      | Read Byte 25 |             | not used                |     |       |       |         |        |      |     |
|             | _                                   | Analog Value Channel 7              |       |       |              |        |       |      | Read Byte 26 |             | reserved for future use |     |       |       |         |        |      |     |
|             | _                                   | not used<br>reserved for future use |       |       |              |        |       |      | Byte27       |             | Analog Value Channel 16 |     |       |       |         |        |      |     |
|             | L                                   |                                     |       |       | - 14-44      |        |       |      | Byte28       |             | Analog Value Channel 16 |     |       |       |         |        |      |     |
|             | _                                   |                                     |       |       | e Ch         |        | _     |      | Read Byte 29 |             | not used                |     |       |       |         |        |      |     |
|             | ╙                                   | Ar                                  | nalog |       | ie Ch        |        | 18    |      | Read Byte 30 |             | reserved for future use |     |       |       |         |        |      |     |
|             | not used<br>reserved for future use |                                     |       |       |              |        |       |      | Byte31       | Not Used    |                         |     |       |       |         |        |      |     |
|             | <u> </u>                            | re                                  | serv  | ed fo | or futu      | ıre us | se    |      | Byte32       |             |                         |     |       |       |         |        |      |     |

Figure 6-124. T1F-16AD-1 Analog Input Module Memory Map

To scale the analog input for the T1F-16AD-1 module, CURVE 2D blocks were used. For the GAP block to convert the raw counts read from the T1F-16AD-1 module to engineering units, the relationship between raw counts and engineering units is specified in the CURVE\_2D block. The raw count to milliamp relationship can be found in the Automation Direct manual T1K-INST-M. See Figure 6-125 for Current Input Module Resolution. The charts specify counts in decimal form. In this example, the 0-20mA scaling graph was used. The CURVE 2D block can be scaled to output any engineering units desired. In this example, the CURVE 2D block was scaled to output 0-20mA when 0-20mA is seen by the module. The X\_1 field specifies the module output counts when the module input is at zero mA. The X 2 field specifies the module output counts when the input is at 20mA. The Y 1 field specifies the block output in milliamps when the input counts are 0. The Y 2 field specifies the block output in milliamps when the input is at maximum counts (8191). The CURVE 2D X 1 and Y 1 fields have been set up as tunable so that the block can be set for a 4-20mA scale if desired. See Figure 6-126 for example of T1F-16AD-1 GAP CURVE 2D scaling blocks.

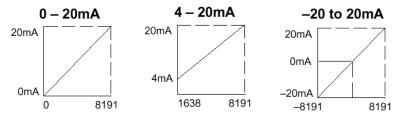



Figure 6-125. T1F-16AD-1 Current Input Module Resolution

Since each channel has two read words, each block address is incremented by two, starting at 30001 and going to 30031.

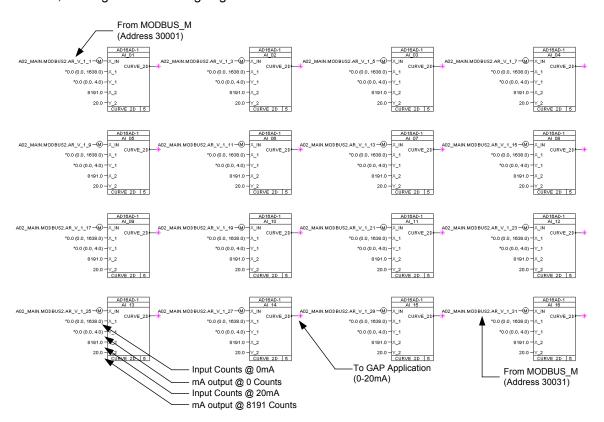
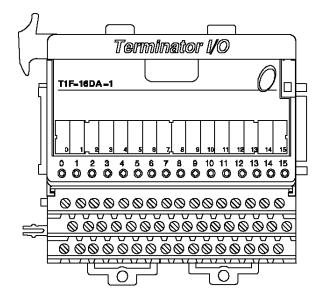




Figure 6-126. Example of T1F-16AD-1 GAP CURVE 2D Scaling Blocks

#### Automation Direct Analog Output (T1F-16DA-1) Module



See Figure 6-127 for example of T1F-16DA-1 module wiring.

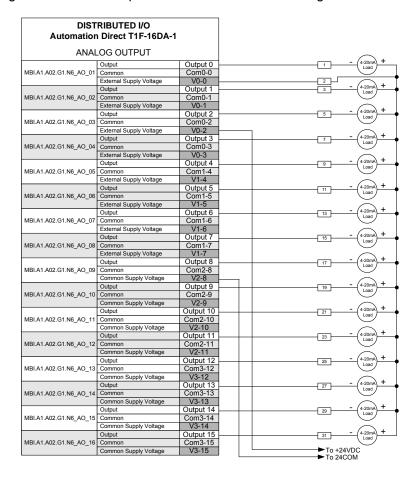



Figure 6-127. Example of T1F-16DA-1 Module Wiring

The memory map indicates that there are no read addresses and 64 byte (32 words) write addresses. Each Analog channel uses 4 bytes. The first and second bytes of a channel contain the analog data. The third and fourth bytes are not used at this time. Channel 1 is an exception, where the 4th byte is the Module Control Byte. See Figure 6-128 for the memory map for the Automation Direct T1F-16DA-1 module.

| Memory Map of 16-Channel Analog Output Module<br>(T1F-016DA) |          |    |      |       |              |        |    |    |               |
|--------------------------------------------------------------|----------|----|------|-------|--------------|--------|----|----|---------------|
| Decimal Bit                                                  | 07       | 06 | 05   | 04    | 03           | 02     | 01 | 00 | 01            |
| Octal Bit                                                    | 07       | 06 | 05   | 04    | 03           | 02     | 01 | 00 | Size          |
|                                                              |          | No | t Us | ed    |              |        |    |    | Read Byte 1   |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 11 |    | Write Byte 1  |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 11 |    | Write Byte 2  |
|                                                              | Г        |    |      | not ( | used         |        |    |    | Byte3         |
|                                                              |          | N  | lodu | le Co | ontro        | l Byt  | e  |    | Write Byte 4  |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 12 |    | Write Byte 5  |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 12 |    | Write Byte 6  |
|                                                              |          |    |      | not ( | used         |        |    |    | Byte7         |
|                                                              |          | re | serv | ed fo | r futu       | ire us | 96 |    | Byte8         |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 13 |    | Write Byte 9  |
|                                                              | Г        | Ar | alog | Valu  | e Ch         | anne   | 13 |    | Write Byte 10 |
|                                                              | П        |    |      | not ( | used         |        |    |    | Byte11        |
|                                                              | Г        | re | serv | ed fo | r futu       | ire us | se |    | Byte12        |
|                                                              | Г        | Ar | alog | Valu  | e Ch         | anne   | 14 |    | Write Byte 13 |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 14 |    | Write Byte 14 |
|                                                              |          |    |      | not ( | used         |        |    |    | Byte15        |
|                                                              |          | re | serv | ed fo | r futu       | ire us | 96 |    | Byte16        |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 15 |    | Write Byte 17 |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 15 |    | Write Byte 18 |
|                                                              |          |    |      | not i | used         |        |    |    | Byte19        |
|                                                              |          | re | serv | ed fo | r futu       | ire us | 96 |    | Byte20        |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 16 |    | Write Byte 21 |
|                                                              |          | Ar | alog | Valu  | e Ch         | anne   | 16 |    | Write Byte 22 |
|                                                              |          |    |      | not i | used         |        |    |    | Byte23        |
|                                                              |          | _  |      |       |              | ire us |    |    | Byte24        |
|                                                              |          |    |      |       |              | anne   |    |    | Write Byte 25 |
|                                                              |          | Ar | alog |       | e Ch<br>used | anne   | 17 |    | Write Byte 26 |
|                                                              |          |    |      |       | Byte27       |        |    |    |               |
|                                                              |          |    | serv |       | Byte28       |        |    |    |               |
|                                                              |          |    | _    |       |              | anne   |    |    | Write Byte 29 |
|                                                              |          | Ar | alog |       |              | anne   | 18 |    | Write Byte 30 |
|                                                              | not used |    |      |       |              |        |    |    | Byte31        |
|                                                              |          | re | serv | ed fo | r futu       | ire us | 96 |    | Byte32        |

| Decimal Bit | 07                      | 06 | 05   | 04    | 03     | 02     | 01   | 00 |               |
|-------------|-------------------------|----|------|-------|--------|--------|------|----|---------------|
| Octal Bit   | 07                      | 06 | 05   | 04    | 03     | 02     | 01   | 00 | Size          |
|             |                         | Ar | alog | Valu  | e Ch   | anne   | 19   |    | Write Byte 33 |
|             | $\vdash$                | Ar | alog | Valu  | e Ch   | anne   | 19   |    | Write Byte 34 |
|             | $\vdash$                |    |      |       | Byte35 |        |      |    |               |
|             |                         | re | serv | ed fo | r futu | ire us | se e |    | Byte36        |
|             | Г                       | An | alog | Value | e Cha  | annel  | 10   |    | Write Byte 37 |
|             |                         | An | alog | Value | e Cha  | annel  | 10   |    | Write Byte 38 |
|             |                         |    |      | not   | used   |        |      |    | Byte39        |
|             |                         | re | serv | ed fo | r futu | ire us | e    |    | Byte40        |
|             |                         | An | alog | Value | e Cha  | annel  | 11   |    | Write Byte 41 |
|             |                         | An | alog | Value | e Cha  | annel  | 11   |    | Write Byte 42 |
|             |                         |    |      | not   | used   |        |      |    | Byte43        |
|             |                         | re | serv | ed fo | r futu | ire us | se e |    | Byte44        |
|             |                         | An | alog | Value | e Cha  | annel  | 12   |    | Write Byte 45 |
|             |                         | An | alog | Value | e Cha  | annel  | 12   |    | Write Byte 46 |
|             |                         |    |      | not   | used   |        |      |    | Byte47        |
|             |                         | re | serv | ed fo | r futu | ire us | e    |    | Byte48        |
|             |                         | An | alog | Value | e Cha  | annel  | 13   |    | Write Byte 49 |
|             |                         | An | alog | Value | e Cha  | annel  | 13   |    | Write Byte 50 |
|             |                         |    |      | not   | used   |        |      |    | Byte51        |
|             |                         | re | serv | ed fo | r futu | ire us | e e  |    | Byte52        |
|             |                         | An | alog | Value | e Cha  | annel  | 14   |    | Write Byte 53 |
|             |                         | An | alog | Value | e Cha  | annel  | 14   |    | Write Byte 54 |
|             |                         |    |      | not   | used   |        |      |    | Byte55        |
|             |                         | re | serv | ed fo | r futu | ire us | se e |    | Byte56        |
|             |                         | An | alog | Value | e Cha  | annel  | 15   |    | Write Byte 57 |
|             |                         | An | alog |       | e Cha  | annel  | 15   |    | Write Byte 58 |
|             |                         |    |      |       | Byte59 |        |      |    |               |
|             | reserved for future use |    |      |       |        |        |      |    | Byte60        |
|             |                         |    |      |       |        | annel  |      |    | Write Byte 61 |
|             |                         | An | alog |       |        | annel  | 16   |    | Write Byte 62 |
|             |                         |    |      | not   | used   |        |      |    | Byte63        |
|             | reserved for future use |    |      |       |        |        |      |    | Byte64        |

Figure 6-128. T1F-16DA-1 Module Memory Map

Since each channel has two read words, each block address is incremented by two, starting at 40001 and going to 40031. Based on the memory map and the Control Byte Table, there are 32 bits (4 bytes or 2 words) allocated for channel 1. The 4th byte (2nd word) is designated as the Module Control Byte. The control byte allows discrete bits to be set for certain functions. This byte is addressed using word address 40002. Individual bits are set using a B16\_TO\_A block to write to address 40002. See Figure 6-129 for example of the Control Byte GAP block. The first 8 bits (byte3) are not used. Bit 24 in the Control Byte Table is the IN\_9\_1 field on the block. This bit is the first bit in byte 4. In this example, Outputs Enable (bit 24) is on (True), the polarity is Unipolar (False), the Voltage Range (bit 26) is not needed and therefore set to (False), the Current Range (bit 27) is set for 0-20mA (False), and bits 28-31 are reserved and therefore set to (False). See Figure 6-130 for T1F-16DA-1 Control Byte Table.

| Module Cor  | Module Control Byte of 8&16-Channel Analog Output Module<br>(T1F-08DA, T1F-16DA) |                           |                               |                               |       |      |    |    |            |  |  |
|-------------|----------------------------------------------------------------------------------|---------------------------|-------------------------------|-------------------------------|-------|------|----|----|------------|--|--|
| Decimal Bit | 31                                                                               | 30                        | 29                            | 28                            | 27    | 26   | 25 | 24 | Read/Write |  |  |
| Octal Bit   | 37                                                                               | 36                        | 35                            | 34                            | 33    | 32   | 31 | 30 | Read/Wille |  |  |
| Bit 24      |                                                                                  |                           | 0 = A                         | tputs<br>II out<br>outp       | tputs | OFF  |    |    | Write      |  |  |
| Bit 25      |                                                                                  |                           | ) = Ú                         | oolar<br>nipola<br>sipola     | ar se | ecte |    |    | Write      |  |  |
| Bit 26      |                                                                                  |                           | 0                             | / <b>10\</b><br>= 5V<br>= 10\ | rang  | je   |    |    | Write      |  |  |
| Bit 27      |                                                                                  |                           | <b>20m/</b><br>0 = 0<br>1 = 4 |                               | Write |      |    |    |            |  |  |
| Bit 28 – 31 |                                                                                  | Reserved for system use - |                               |                               |       |      |    |    |            |  |  |

Figure 6-129. T1F-16DA-1 Control Byte Table

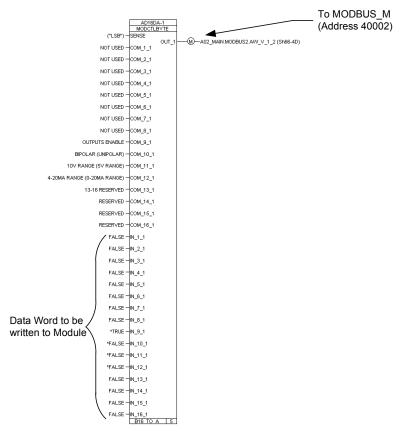



Figure 6-130. Example of T1F-16DA-1 Control Byte GAP Block

To scale the analog output words for the T1F-16DA-1 module, CURVE 2D blocks were used. The GAP block converts the input, in milliamps, to raw counts used by the T1F-16AD-1 module. The milliamp to raw count relationship can be found in the Automation Direct manual T1K-INST-M. See Figure 6-131 for Current Output Module Resolution. The charts specify counts in decimal form. In this example, the 0-20mA scaling graph was used. The CURVE 2D block can be scaled to output any engineering units desired. In this example, the CURVE 2D block was scaled to output 0-4095 counts when 0-20mA is seen by the application. The X 1 field specifies the minimum milliamp value (0mA) from the GAP application. The X 2 field specifies the maximum milliamp value (20mA) from the GAP application. The Y\_1 field specifies the block output in counts (0 counts) when the minimum input is 0mA. The Y 2 field specifies the block output in counts (4095 counts) when the maximum input is 20mA. The CURVE 2D X 1 field has been set up as tunable so that the block can be set for a 4-20mA scale if desired. See Figure 6-132 for example of T1F-16DA-1 GAP CURVE 2D scaling blocks.

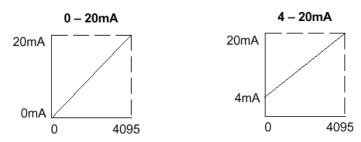



Figure 6-131. T1F-16DA-1 Current Output Module Resolution

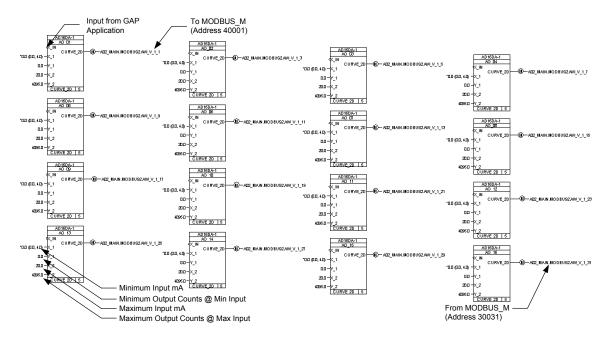



Figure 6-132. Example of T1F-16DA-1 GAP Analog Write Blocks

#### **Automation Direct Thermocouple Input (T1F-14THM) Module**



In this example, Type K thermocouples are used. See Figure 6-133 for example of T1F-14THM module wiring.

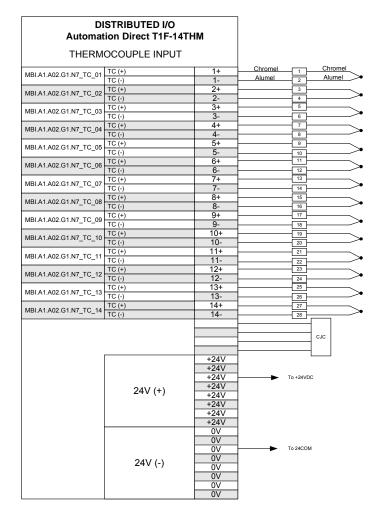



Figure 6-133. Example of T1F-14THM Module Wiring

According to Automation Direct, the T1F-14THM module uses the same memory map as the T1F-16AD-1 module. Based on this memory map, there are 64 byte (32 words) addresses and no write byte addresses. See Figure 6-134 for memory map of Automation Direct T1F-14THM Thermocouple module.

| Memo        | ory N | Лар о |       |     | hannel<br>1F–16A |        | og li      | put | Module       | Decimal Bit                        | 07<br>07                | 06                  | 05          | _   |                                 | 03        | 02         | 01           | 00           | Size         |
|-------------|-------|-------|-------|-----|------------------|--------|------------|-----|--------------|------------------------------------|-------------------------|---------------------|-------------|-----|---------------------------------|-----------|------------|--------------|--------------|--------------|
| Decimal Bit | 07    | 06    | 05    | 0   | 04 03            | 02     | 01         | 00  | Size         | Octal Bit                          | 07                      | 90<br>Ar            | 05<br>nalog | _   | )4 (<br>alue                    | 03<br>Cha | 02<br>anne | 01           | 00           | Read Byte 33 |
| Octal Bit   | 07    | 06    | 05    | 0   | 04 03            | 02     | 01         | 00  | 3126         |                                    | $\vdash$                | Ar                  | nalog       | 2 V | alue                            | Cha       | anne       | 19           |              | Read Byte 34 |
|             |       | Ar    | nalog | V   | alue Ch          | anne   | 11         |     | Read Byte 1  |                                    | $\vdash$                |                     | _           | n   | ot us                           | ed        |            |              |              | Byte35       |
|             |       | Ar    | nalog | V   | alue Ch          | anne   | 11         |     | Read Byte 2  | te 2 reserved for future use       |                         |                     |             |     | Byte36                          |           |            |              |              |              |
|             |       |       |       | ne  | ot used          |        |            |     | Byte3        |                                    | H                       | An                  | alog        | Va  | alue (                          | Cha       | nnel       | 10           |              | Read Byte 37 |
|             |       | re    | eserv | ed  | d for futu       | ıre us | 5 <b>0</b> |     | Byte4        |                                    | $\vdash$                | An                  | alog        | Vε  | alue (                          | Cha       | nnel       | 10           |              | Read Byte 38 |
|             |       | Ar    | nalog | ١V  | alue Ch          | anne   | 12         |     | Read Byte 5  |                                    | $\vdash$                |                     | -           | n   | ot us                           | ed        |            |              |              | Byte39       |
|             |       | Ar    | nalog | V   | alue Ch          | anne   | 12         |     | Read Byte 6  |                                    | $\vdash$                | re                  | eserv       | ved | i for                           | futu      | re us      | se           |              | Byte40       |
|             |       |       |       | ne  | ot used          |        |            |     | Byte7        |                                    | $\vdash$                | An                  | alog        | Vε  | alue (                          | Cha       | nne        | 11           |              | Read Byte 41 |
|             |       | re    | eserv | ed  | d for futu       | ıre us | se         |     | Byte8        |                                    | $\vdash$                | An                  | alog        | Vε  | alue (                          | Cha       | nne        | 11           |              | Read Byte 42 |
|             |       | Ar    | nalog | V   | alue Ch          | anne   | 13         |     | Read Byte 9  |                                    | $\vdash$                |                     | -           | n   | ot us                           | ed        |            |              |              | Byte43       |
|             |       | Ar    | nalog | ı۷  | alue Ch          | anne   | 13         |     | Read Byte 10 |                                    | $\vdash$                | re                  | serv        | ved | i for                           | futu      | re us      | se           |              | Byte44       |
|             |       |       |       | n   | ot used          |        |            |     | Byte11       |                                    | $\vdash$                | An                  | alog        | Vε  | alue (                          | Cha       | nnel       | 12           |              | Read Byte 45 |
|             |       | re    | eserv | ed  | i for futu       | ıre us | Se         |     | Byte12       |                                    | $\vdash$                | An                  | alog        | Vε  | alue (                          | Cha       | nnel       | 12           |              | Read Byte 46 |
|             |       |       |       | _   | alue Ch          |        |            |     | Read Byte 13 |                                    | $\vdash$                |                     |             | n   | ot us                           | ed        |            |              |              | Byte47       |
|             |       | Ar    | nalog | ١V  | alue Ch          | anne   | 14         |     | Read Byte 14 |                                    | reserved for future use |                     |             |     |                                 |           |            |              | Byte48       |              |
|             |       |       |       | n   | ot used          |        |            |     | Byte15       |                                    | Analog Value Channel 13 |                     |             |     |                                 |           |            |              | Read Byte 49 |              |
|             |       |       |       |     | i for futu       |        |            |     | Byte16       |                                    | Т                       | An                  | alog        | V٤  | alue (                          | Cha       | nnel       | 13           |              | Read Byte 50 |
|             |       |       |       | _   | alue Ch          |        |            |     | Read Byte 17 |                                    | $\vdash$                |                     |             | n   | ot us                           | ed        |            |              |              | Byte51       |
|             |       | Ar    | nalog | Į V | alue Ch          | anne   | 15         |     | Read Byte 18 |                                    | $\vdash$                | re                  | eserv       | ved | i for                           | futu      | re us      | se           |              | Byte52       |
|             |       |       |       | ne  | ot used          |        |            |     | Byte19       |                                    | $\vdash$                | Analog Value Channe |             |     |                                 |           |            | 14           |              | Read Byte 53 |
|             |       | re    | eserv | ed  | d for futu       | ıre us | Se         |     | Byte20       |                                    | Т                       | An                  | alog        | V٤  | alue (                          | Cha       | nnel       | 14           |              | Read Byte 54 |
|             |       |       |       | _   | alue Ch          |        |            |     | Read Byte 21 |                                    | Т                       |                     |             | n   | ot us                           | ed        |            |              |              | Byte55       |
|             |       | Ar    | nalog | V   | alue Ch          | anne   | 16         |     | Read Byte 22 |                                    |                         | re                  | eserv       | ved | i for t                         | futu      | re us      | se           |              | Byte56       |
|             |       |       |       | ne  | ot used          |        |            |     | Byte23       |                                    |                         | An                  | alog        | Vε  | alue (                          | Cha       | nnel       | 15           |              | Read Byte 57 |
|             |       |       |       |     | d for futu       |        |            |     | Byte24       |                                    | T                       | An                  | alog        | ٧a  | alue (                          | Cha       | nnel       | 15           |              | Read Byte 58 |
|             |       |       |       | _   | alue Ch          |        |            |     | Read Byte 25 |                                    | $\vdash$                |                     |             | n   | ot us                           | ed        |            |              |              | Byte59       |
|             |       | Ar    | nalog | Į V | alue Ch          | anne   | 17         |     | Read Byte 26 |                                    | reserved for future use |                     |             |     |                                 | Byte60    |            |              |              |              |
|             |       |       |       | ne  | ot used          |        |            |     | Byte27       |                                    | Analog Value Channel 16 |                     |             |     | Analog Value Channel 16 Read By |           |            | Read Byte 61 |              |              |
|             |       |       |       |     | i for futu       |        |            |     | Byte28       |                                    | Analog Value Channel 16 |                     |             |     | 116 Read Byte 6                 |           |            |              |              |              |
|             |       |       |       | _   | alue Ch          |        | _          |     | Read Byte 29 | not used                           |                         |                     | Byte63      |     |                                 |           |            |              |              |              |
|             |       | Ar    | nalog | _   | alue Ch          | _      | 8 1        |     | Read Byte 30 | Byte 30 reserved for future use By |                         |                     | Byte64      |     |                                 |           |            |              |              |              |
|             |       |       |       | n   | ot used          |        |            |     | Byte31       |                                    | _                       | No                  | ot Us       | sed | 1                               |           |            |              |              | Write Byte 1 |
|             |       | re    | eserv | ed  | i for futu       | ire us | se         |     | Byte32       |                                    |                         |                     |             |     |                                 |           |            |              |              | •            |

Figure 6-134. T1F-14THM Thermocouple Module Memory Map

The T1F-14THM Thermocouple module has a set of jumpers located under the top cover of the module for configuring certain parameters. See Figure 6-135 for T1F-14THM Jumper configuration Tables. In this example, the jumpers were configured for 14 channels of Type K thermocouples with output in °F and calibration disabled. See Figure 6-136 for T1F-14THM jumper locations.

Input Type

| Number of Channels |      |        |      |      |  |  |  |  |  |  |
|--------------------|------|--------|------|------|--|--|--|--|--|--|
| Number of          |      | Jumper |      |      |  |  |  |  |  |  |
| Channels           | CH+1 | CH+2   | CH+3 | CH+4 |  |  |  |  |  |  |
| 1                  |      |        |      |      |  |  |  |  |  |  |
| 2                  | х    |        |      |      |  |  |  |  |  |  |
| 3                  |      | х      |      |      |  |  |  |  |  |  |
| 4                  | х    | Х      |      |      |  |  |  |  |  |  |
| 5                  |      |        | Х    |      |  |  |  |  |  |  |
| 6                  | х    |        | Х    |      |  |  |  |  |  |  |
| 7                  |      | Х      | Х    |      |  |  |  |  |  |  |
| 8                  | Х    | х      | Х    |      |  |  |  |  |  |  |
| 9                  |      |        |      | Х    |  |  |  |  |  |  |
| 10                 | Х    |        |      | Х    |  |  |  |  |  |  |
| 11                 |      | Х      |      | Х    |  |  |  |  |  |  |
| 12                 | х    | х      |      | Х    |  |  |  |  |  |  |
| 13                 |      |        | Х    | Х    |  |  |  |  |  |  |
| 14                 | Х    | Х      | Х    | Х    |  |  |  |  |  |  |

X = Jumper Installed,

| Thermocouple /<br>Voltage Inputs |               | Jun           | nper          |               |
|----------------------------------|---------------|---------------|---------------|---------------|
|                                  | T/C<br>Type 0 | T/C<br>Type 1 | T/C<br>Type 2 | T/C<br>Type 3 |
| J                                | X             | Х             | Х             | Х             |
| К                                |               | ×             | ×             | Х             |
| E                                | X             |               | X             | Х             |
| R                                |               |               | Х             | Х             |
| S                                | X             | ×             |               | Х             |
| Т                                |               | ×             |               | Х             |
| В                                | Х             |               |               | Х             |
| N                                |               |               |               | Х             |
| С                                | X             | ×             | ×             |               |
| 0-5V.                            |               | Х             | X             |               |
| ±5V.                             | Х             |               | х             |               |
| 0-156mV.                         |               |               | ×             |               |
| ±156mV.                          | Х             | Х             |               |               |

#### Thermocouple Conversion Units

|         | - | Temperatu            | re Conversion | Units         |
|---------|---|----------------------|---------------|---------------|
| Jumper  |   | ide Plus<br>gn<br>°C | 2's Com<br>°F | plement<br>°C |
| Units-0 | X |                      | X             |               |
| Units-1 | Х | Х                    |               |               |

X = Jumper Installed, Blank Space = Jumper Removed

Figure 6-135 for T1F-14THM Jumper configuration Tables

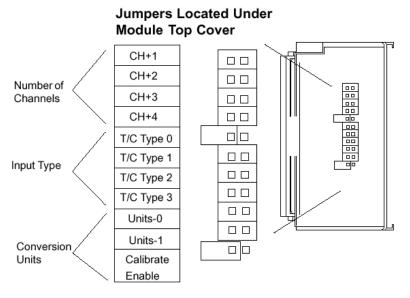



Figure 6-136 for T1F-14THM Jumper Locations

It has been found that the thermocouple value must be scaled to one tenth the value output by the T1K-MODBUS interface module. A divide by 10 block is used to scale the thermocouple inputs. See Figure 6-137 for example of T1F-14THM GAP DIVIDE Blocks.

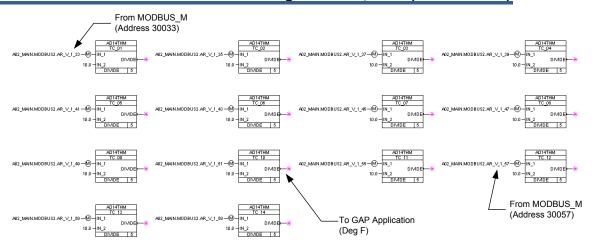



Figure 6-137. Example of T1F-14THM GAP DIVIDE Blocks

We appreciate your comments about the content of our publications.

Send comments to: icinfo@woodward.com

Please reference publication 85586V2G.



PO Box 1519, Fort Collins CO 80522-1519, USA 1000 East Drake Road, Fort Collins CO 80525, USA Phone +1 (970) 482-5811 • Fax +1 (970) 498-3058

Email and Website—www.woodward.com

Woodward has company-owned plants, subsidiaries, and branches, as well as authorized distributors and other authorized service and sales facilities throughout the world.

Complete address / phone / fax / email information for all locations is available on our website.