

Current-to-Pressure Converter.

Built to handle steam turbine users' #1 reliability problem — dirty oil— the new Woodward CPC-II features a robust design and self-cleaning action that **increases reliability**. The superb accuracy and resolution of this servo positioner make it ideal for improving steam turbine valve control performance.

Turbomachinery Controls
Improve Reliability • Enhance Performance

Woodward's CPC-II Provides:

High Tolerance to Dirty Oil

- $\bullet\,$ Handles turbine lube oil no additional filtering needed
- Corrosion-resistant materials 440C stainless steel for key components
- Self-cleaning control valve
- Large internal ports for contamination resistance
- · "Silt-buster" algorithm to flush out dirt

Enhanced Feature Set

- Fast 2.5 ms scan time reduces control error
- 10-30 ms total response time for accurate control
- Redundant signal and power inputs for high reliability
- Two units can be installed in parallel for redundant control
- Easily test turbine servo system range with a screwdriver
- Isolated I/O eliminates electrical noise-induced errors
- Correction curve for non-linear systems delivers more predictable control
- PC-based service and trending tools for system troubleshooting
- · Increased diagnostics information for better troubleshooting

Specification Highlights

- · IECEx certified for use in hazardous locations
- ATEX compliant, CSA Certified, INMETRO Certified
- GOST R certified for use in explosive atmospheres
- Accuracy: < ± 0.2% of full range
- Repeatability: 0.1% of full range
- Temperature drift: < ± 0.01% of full range / °C
- Pressure stability: < ± 2% of setpoint
- Operating temperature range, 40 °C to + 85 °C

For more information, please refer to product spec 03352 and manual 26615.

The CPC-II Advantages:

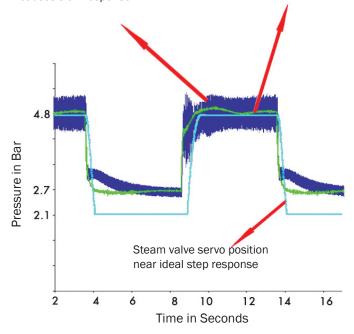
Over the Old Style Woodward CPC

- 4 times the valve force
- Same mounting configuration
- Better tolerance to dirty oil

Over a Conventional I/H Converter

- More stable operation
- No sticking
- Greater linearity
 - < 0.2% for CPC-II
 - < 1.0% for I/H Converter
- Same mounting configuration, when using Woodward adaptor kit 9828-7240
- Better tolerance to dirty oil
- More valve force

The CPC-II


Compared to conventional I/H converter systems, the CPC-II output is quiet and stable —

Conventional I/H Converter Pressure Signal

Excess pressure "noise" causes increased wear in the servo system, while over-damped dynamics causes slow response

CPC-II Pressure Signal

Stable pressure for reduced system wear with rapid response

Models

Maximum Supply & Control Pressure Rating	Zone 2, Category 3 Group II G, Ex nAnL IIC T4 Gc Class I, Div. 2 Groups A, B, C, D, T4
Supply 25 Bar Control 10 Bar	9907-1200
Supply 25 Bar Control 25 Bar	9907-1198

Maximum Supply & Control Pressure Rating	Zone 1, Category 2 Group II G, d IIC T4 Gb Zone 2, Category 3 Group II G, Ex nAnL IIC T4 Gc Class I, Div. 1 Groups C and D and Class I, Div. 2 Groups A, B, C, D, T4
Supply 25 Bar Control 10 Bar	9907-1199
Supply 25 Bar Control 25 Bar	9907-1197

For more information go to woodward.com or email turboinfo@woodward.com.

