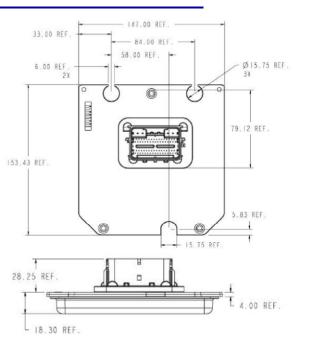


MotoHawk Control Solutions

ECM-S12X-070-1001

Engine Control Module


Description

The ECM-S12X-070-1001 Engine Control Module from Woodward's new MotoHawk Control Solutions product line. These rugged controllers are capable of operating in harsh automotive, marine, and off-highway applications. Numerous marine applications have proven the capability of this family. Based on the Freescale MC9S12 family of microprocessors, the ECM-S12X-070-1001 is capable of delivering complex control strategies. The onboard fixed-point unit and high clock frequency allow software to be executed in shorter times. The CAN 2.0B datalink ensures interoperability with other vehicle systems.

The ECM-S12X-070-1001 is part of the MotoHawk ControlCore[®] line of embedded control systems. The ControlCore operating system, MotoHawk[®] code generation product, and MotoHawk's suite of development tools enable rapid development of complex control systems.

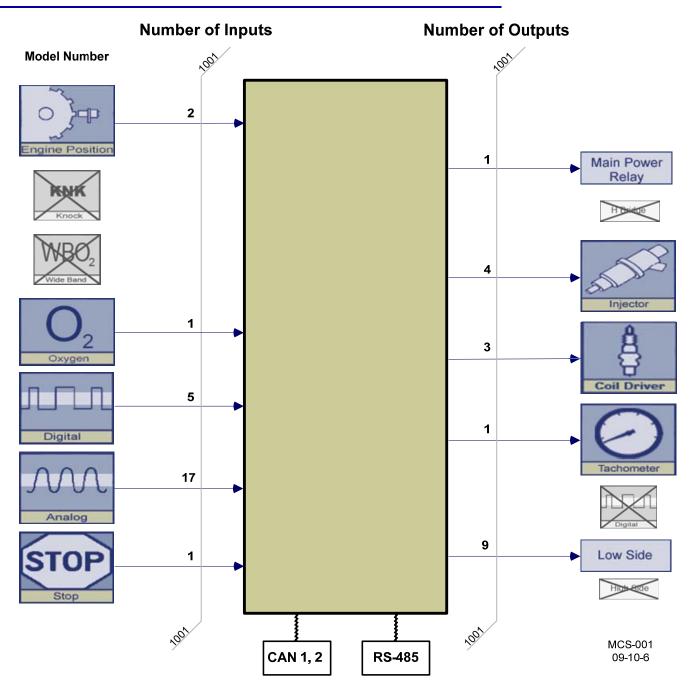
This controller is only available in the 'C' (Calibratible) version. This module can be used for either production purposes or for prototyping/development. It can be calibrated in real time using MotoTune[®].

Physical Dimensions

- 70-pin platform
- Microprocessor: Freescale MC9S12XEP100, 50 MHz
- Memory: 1M Flash, 64K RAM,(13K of the 64K RAM is available to the application)
- + 32K D-Flash, 4K internal EEPROM, 64K serial FRAM
- Operating Voltage: 6.5–16 Vdc, 24 V (jump start), 5 V (crank)
- Operating Temperature: -40 to +85 °C (105 °C possible in some applications)

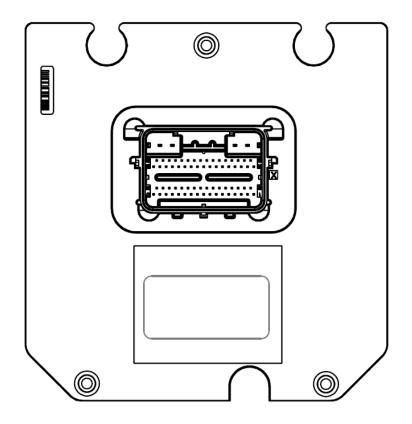
Inputs:

- 17 Analog
- 1 Oxygen Sensor
- 1 VR or Digital Encoder (Crank)
- 1 Digital Encoder (CAM)
- 1 Digital Frequency (Speed)
- 4 Switch to GND
- 1 E-STOP

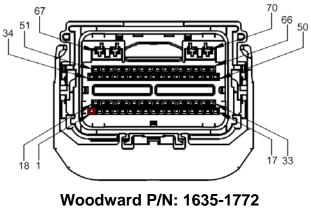

Outputs:

- 4 Fuel Injector
 - 3 Spark
- 9 Low Side Drivers
- 1 Tach Driver
- 1 Main Power Relay Driver
- 2 Sensor Supply (5 V) Outputs

Communications:


- 2 CAN 2.0B channels
- 1 RS-485 channel

Simple Block Diagram



Ordering Information

Controller	Part No.	w/Mounting Hardware	Boot Key (P/N)	Boot Cable	Pigtail Harness	Development Harness	Desktop Simulator Harness (P/N)
ECM-S12X-070- 1001-C00	1751-6466	8923-1640	N/A	5404-1144	5404-1141	5404-1143	5404-1207

Connector viewed from wire insertion side:

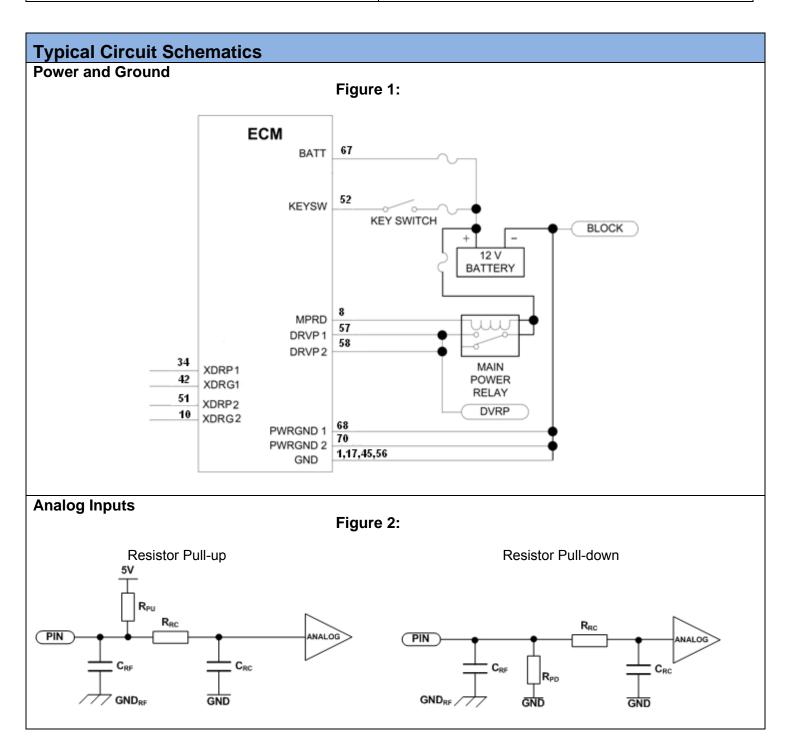
TYCO ELECTRONICS P/N: 1438136-1

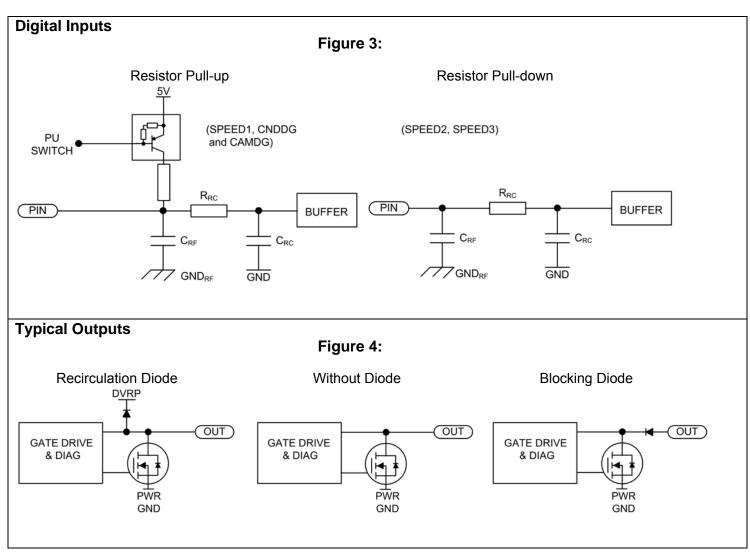
Block Diagram

	ECM7	0	
67	BATTERY	- MPRD -	8
52	KEYSW	· •	57
14			58
13	CNKVR+		
5	CNKVR-		49
<u></u>	CNKDG (47.5K PD)	FORTT	50
30	CAMDG (47.5K PD)	FUELZ	65
	(1K PU5, S/W SELECTABLE)		48
22	AN01 (51K PD)	FOEL4	32
20	AN02 (1K PU5)	SPARKI	33
21	AN03 (1K PU5)	SFARIZ	<u>55</u> 66
53	AN04 (220K PD)	SPARK3 -	00
54	AN05 (220K PD)		6.0
<u>39</u>	AN06 (51K PD)		69
10	AN07 (205 PU5)		<u>47</u>
<u>18</u> 12	AN08 (500 PD)	LSO1C -	64
35	AN09 (51K PD)	+	3
6	AN10 (51K PD)	¥ LSO2 -	<u> </u>
38	AN11 (1K PU5)	+	16
37	AN12 (10K PU5)	T 1803 -	10
36	AN13 (205 PU5)	± 1804 -	61
40	AN14 (51K PD) AN15 (205 PU5)		
7	AN15 (205 P05) AN16 (150K PU5)	LSO5 -	63
44	AN17 (220K PD)	1303	
19	AN18 (1M PU 0.45)	LS06 -	43
59	O2ALO (GND)	LSO7 –	2
27	O2BLO (GND)		5.6
41		LSO8 -	56
11	STOP (1K PU5)	LSO9 -	60
9	SWG1 (1K PU5)		
31	SWG2 (1K PU5)	(1.8K PU12) TACH LINK	4
62	SWG3 (1K PU5) SWG4 (1K PU5)	(
15	DFRQ (1K PU5)	XDRPWR1	34
			42
28	RS-485+ (A)	ר חזות התע	51
29	RS-485- (B)	ADREWRZ –	10
23	CAN1H		60
24	CAN1L	PWRGNDI	68 70
26		PWRGNDZ	1
25	CAN2H	GND (Tedundanc)	<u> </u>
20	CAN2L	GND (reduiidaiic)	45
		GND (Tedundanc)	46
	70 PI		

Input Signal Conditioning	Notes (see Resource by Connector Pin table and/or block diagram for pull up/pull down resistor levels)
datasheet values. Actual capability is somewhere betwee	d the state of all other inputs and outputs. In most cases it
Power and Ground	(Note—See Figure 1 in "Typical Circuit Schematics"
BATTERY, ECUP (KEY SWITCH), DRVP1, DRVP2, PWRGND1, PWRGND2, XDRG1, XDRG2, O2ALO, O2BLO, GND	section for Power and Ground Block Diagram)
BATTERY(67)	V_{BATT} (min) = 5 V (crank transient) and 6.5 V
BATT is normally connected to battery via a fuse.	(continuous) V _{BATT} (nom) = 8-16 V
	I_{BATT} (key off, max) = 1 mA at V_{BATT} = 13 V (Battery drain when module is off)
ECUP (KEY SWITCH)(52)	V _{IL} (max) = 18 V
This input is the user interface to turn the module on	V_{IH} (min)= 4 V V_{ADC} = 0.181 x V_{KEYSW} (10-bit resolution)
and off.	$\tau = 1.8 \text{ ms}$
DRVP1 (57), DRVP2 (58)	$V_{\rm IN} = 0$ to 18 V
These pins are normally connected to the output of	V_{ADC} = 0.181 x V_{KEYSW} (10-bit resolution
the main power relay, Driver Power (battery voltage).	τ = 1.8 ms
They provide a current path back to the load (e.g. controlled current) as well as a power source to the internal H-bridges.	Note —Unless otherwise specified, all low-side loads assume protection from reverse battery via the main power relay and DRVP.
PWRGND1(68), PWRGND2(70) These pins are the single point ground for the module.	Note —All DRVG terminals are internally connected (one electrical node).
XDRG1(42), XDRG2(10)	Note —These pins are signal return paths from analog
Transducer Grounds	sensors and or switch inputs
O2ALO(59), O2BLO(27)	Note —These pins are signal return paths from oxygen
The O_2 sensors grounds	sensors. Because the ECU ties these signal return paths to the single point ground, the O_2 sensor must be isolated.
GND (Redundant) (1,17,45,46)	Note —Internally, ECM70 uses a ground plane. These pins may be used as redundant grounds if necessary.

Input Signal Conditioning	Notes (see Resource by Connector Pin table and/or block diagram for pull up/pull down resistor levels)
CNKVR+(14), CNKVR– (13) Variable reluctance input	Vin (min) = 1 volt (peak-peak) at 24 Hz Vin (max) = 360 volts (peak-peak) at 3000 Hz $F_{_{3dB}} = 569$ Hz Note —The frequency (min and max) are dependent on the input signal waveform and software processing of the conditioned signal.
CNKDG(5) This is a digital position input, normally used for crankshaft position.	
CAMDG(30) This is a digital position input, normally used for the camshaft. It includes a software selectable pull-up resistor and is suitable for 5-volt or open-drain type sensors.	$V_{\text{L}}(\text{max}) = 2.0 \text{ V}$ $V_{\text{H}}(\text{min}) = 3.0 \text{ V}$ $V_{\text{HYST}} = 400 \text{ mV}$ $T = 1 \text{ ms}$ $R_{\text{PULLUP}} = 1 \text{ k}\Omega \text{ to 5 V software selectable}$ $R_{\text{PULLDOWN}} = 47.5 \text{ k}\Omega$ Note —Typical applications will use a 50% duty-cycle (half moon) sensor. No internal termination.
DFRQ(15) Digital frequency input.	V _{IL} (max) = 2.0 V V _{IH} (min) = 3.0 V V _{HYST} = 400 mV T = 5 μs R _{PULLUP} = 1 kΩ to 5 V
Analog Inputs AN01(22), AN02(20), AN03(21), AN04(53), AN05(54), AN06(39), AN07(55), AN09(12), AN10(35), AN11(6), AN12(38), AN13(37), AN14(36), AN15(40), AN16(7), AN17(44) See Figure 2 in "Typical Circuit Schematics" section.	Vin = 0 to 5 volts $V_{A/D} = V_{IN}$ T = 1 ms A/D Resolution: 10-bits A/D Accuracy: 0.6% Note —Short-to-ground and short-to-battery protected. The pull-up or pull-down values are specified in Block Diagram on page 4 and Connector Pinout descriptions on page 11. Normal Input voltage: 0–16 V
	$V_{A/D} = 0.181(V_{IN})$ A/D Accuracy: 5% (0–16 V)
AN18(19)	 R_{PULLUP} = 13 MΩ, 5% to 5 V R_{PULLDOWN} = 1.2 MΩ, 5% Note— Input designed for oxygen sensor, doesn't allow for any amplification. Software selectable pull-up 1 kΩ
Switch Inputs SWG1(11), SWG2(9), SWG3(31), SWG4(62).	$\begin{array}{l} R_{_{PULLUP}} = 1.0 \ \text{k}\Omega \\ \textbf{r} = 1 \ \text{ms} \\ \text{Vil} \ (\text{max}) = 2.0 \ \text{V} \\ \text{Vih} \ (\text{min}) = 3.0 \ \text{V} \\ \text{Vhyst} \ (\text{min}) = 0.4 \ \text{V} \\ \textbf{Note-} \ \text{Short-to-ground and short-to-battery protected.} \end{array}$


Input Signal Conditioning	Notes
STOP (41)	$R_{PULLUP} = 1.0 kΩ to 5 V$ Analog Monitor: τ = 180 us V _{A/D} = V _{IN} (analog monitor) A/D Resolution: 10-bits A/D Accuracy: 0.6%
	Digital Monitor: $\tau = 1 \text{ ms}$ Vil (max) = 2.0 V Vih (min) = 3.0 V Vhyst (min) = 0.4 V


Output Signal Conditioning	Notes
See Figure 4 in "Typical Circuit Schematics" section.	Outputs are protected from shorts to battery and ground. Outputs have open circuit and short circuit detection.
	Low-side output drivers sink current and the maximum current must not exceed the specified value, Imax.
	Stored energy in an inductive load, E=0.5*L*(I^2), must not exceed the specified value, Emax.
	LSO3, LSO4, LSO5, and LSO8 are implemented as integrated outputs on the same IC. A short-to-battery on one of these outputs may also cause the other outputs to turn-off.
	LSO7 is not protected from a short to battery when the key is off and software is not operating.
XDRP1(34), XDRP2(51)	Vout: 5 V ± 0.5% lout (max): 100 mA
5-volt supply for analog sensors.	$R_{PULLDOWN} = 20 \text{ k}\Omega(\text{monitor circuit})$ T = 5 ms V _{A/D} = 0.5(V _{IN})
	A/D Resolution: 10-bits A/D Accuracy: 4% (0–5.25 V)
	Note —XDRPx is on whenever the key switch is on. When the key switch is turned off, XDRPx remains on until software shuts the system down.
TACH – LINK(4)	R_{PULLUP} = 1.8 kΩ to key switch
0-12 volt pulsed output, implemented as low side output with pull-up resistor	Isink (max) = 250 mA Isource (max) = 7 mA (at Vkeysw = 14 V) Trise (max) = 7 μs (@ external 200 ohm load to battery) Tfall (max) = 3 μs (@ external 200 ohm load to battery)
	Note —Short to battery and short to ground protected. Short to ground not detected. LINK is a "bit-banged" serial interface, enabled via software.
MPRD (8) Main power relay control output	ISINK (max) = 500 mA Emax = 50 mJ Note —The high-side of the main power relay is normally connected to battery (fused). Reverse battery-protected via series blocking diode.

Output Signal Conditioning	Notes
SPARK1(32), SPARK2(33), SPARK3(66) Low-side output driver, IGBT	Imax = 10 A (peak) Note —Imax of 10 A directly implies that the average current during Ton is 5 A.
INJ1(49), INJ2(50), INJ3(65), INJ4(48) Low-side output driver	Imax = 1.4 A Lmax (load) = 12 mH Duty-cycle: 0 to 100% Note —Clamped at 47 V (nominal)
LSO1A(69),LSO1B(47),LSO1C(64), Low-side output with current monitor	ISINK (max) = 12 A (discrete) or 3 A (PWM) $T = 220 \ \mu s$ (monitor circuit) $V_{A/D} = 0.255$ (lout) A/D Resolution: 10 bits A/D Accuracy: 20% @ 4 A, 10% @ 12 A Note —Implementation uses low-side drive with flyback (recirculation) diode to DRVP.
LSO2(3) Low-side output with PWM capability	Imax = 2 A Fmax = 500 Hz Note —The 500 Hz maximum frequency results from excess power dissipation during a short to battery. Implementation uses low-side drive with flyback (recirculation) diode to DRVP.
LSO3(16),LSO4(61) Low-side output with PWM capability	Imax = 1 A Fmax = 1000 Hz Note —The 1000 Hz maximum frequency results from excess power dissipation during a short to battery. Implementation uses low-side drive with flyback (recirculation) diode to DRVP.
LSO5(63),LSO8(56) Low-side output	Imax = 1 A Emax = 100 mJ Fmax = 1000 Hz Note —There is no flyback diode on this output. The 1000 Hz maximum frequency results from excess power dissipation during a short to battery.
LSO6(43), LSO9(60), Low-side output	Imax = 500 mA Emax = 50 mJ Note —There is no flyback diode on this output. Short to battery and short to ground protected. Short to ground not detected. Clamped at 45 V (nominal).
LSO7(2) Low-side output Caution: Normally on (even with key off)	Imax = 2 A Emax = 50 mJ Note —There is no flyback diode on this output. Short to battery and short to ground protected. Short to ground not detected. Clamped at 47 V (nominal).

Communications	
CAN1Hi(23), CAN1Lo(24), CAN2Hi(26), CAN2Lo(25)	High-speed CAN 2.0B buses, no internal termination. 500 kps capable, validated to 250 kps
RS485+(28), RS485-(29)	RS-485 serial lines

Memory	
FLASH	Base 256K, Calibratible 1M
RAM	Base 16K, Calibratible 64K
EEPROM	4K EEPROM; serial

Connector Pinouts

Pin#		Pin#		Pin#		Pin#	
	GND		AN18		AN13		AN5
_	Ground		Analog input 18		Analog input 13		Analog input 5
1	1	19	R _{PULLUP} =1 MΩ (O ₂ sensor)	37	R _{PULLUP} =201 Ω, 1%	54	R _{PULLDOWN} =220 kΩ, 5%
	LSO7		AN2		AN12		AN7
2	Low Side Output 7	20	Analog input 2	38	Analog input 12	55	Analog input 7
2	Normally on, 2 A, No diode	20	R _{PULLUP} =1.0 kΩ, 1%	50	R _{PULLUP} =10.0 kΩ, 1%	55	R _{PULLUP} =201 Ω, 1%
	LSO2		AN3	_	AN6		LSO8
3	Low Side Output 2	21	Analog input 3	39	Analog input 6	56	Low Side Output 8
	Recirc. diode, 2 A	21	R _{PULLUP} =1.0 kΩ, 1%	00	R _{PULLDOWN} =51.1 kΩ, 1%		No diode, 1 A
	TACH_LINK		AN1	-	AN15		DRVP1
4	Digital Output	22	Analog input 1	40	Analog input 15	57	Driver Power
	0/12 V, Isink 250 mA, Isource 7 mA, serial		R _{PULLDOWN} =51.1 kΩ, 1%		R _{PULLUP} =201 Ω, 1%	51	
	CNKDG		CAN1H	-	STOP		DRVP2
5	Digital Input	23	CAN Hi	41	Emergency Stop Input	58	Driver Power
	Rpulldown=47.5 kΩ	20	CAN2.0b	41	With Monitor, disables MPRD, R _{PULLUP} =1.0 kΩ		
	AN11	24	CAN1L	_	XDRG1	59	O2ALO
6	Analog input 11		CAN Lo	42	Transducer Ground		Oxygen Sensor Ground
	R _{PULLUP} =1.0 kΩ, 1%		CAN2.0b				
	AN16		CAN2L		LSO6		LSO9
7	Analog input 16	25	CAN Lo	43	Low Side Output 6	60	Low Side Output 9
	R _{PULLUP} = 150 kΩ		CAN2.0b		No diode, 500 mA		No diode, 500 mA
	MPRD		CAN2H		AN17		LSO4
8	Main Power Relay Driver	26	CAN Hi	44	Analog input 17	61	Low Side Driver 4
	Blocking diode, 500 mA	20	CAN2.0b		R _{PULLDOWN} =220 kΩ, 5%		Recirc. diode, 1 A
	SWG2		O2BLO	_	GND		SWG4
9	Switch-to-ground input	27	Oxygen Sensor Ground	45	Ground	62	Switch-to-ground input
	R _{PULLUP} = 1.0 kΩ		(for optional population)				$R_{PULLUP} = 1.0 \text{ k}\Omega$
	XDRG2		RS-485+		GND		LSO5
10	Transducer Ground	28	Serial communication	46	Ground	63	Low Side Driver 5
							No diode, 1 A
	SWG1		RS-485-	-	LSO1B		LSO1C
11	Switch-to-ground input	29	Serial communication	47	Low Side Output with monitor (same as 64,69)	64	Low Side Output with monitor (same as 47,69)
	$R_{pullup} = 1.0 \text{ k}\Omega$				Recirc. diode, 12 A (or 3 A PWM)		Recirc. diode, 12 A (or 3 A PWM)

Pin#		Pin#		Pin#		Pin#	
	AN9		CAMDG		FUEL4		FUEL3
12	Analog input 9	30	Digital input. Software selectable pull-up	48	Low-side output driver	65	Low-side output driver
	R _{PULLDOWN} =51.1 kΩ, 1%		Rpullup = 1.0 kΩ Rpulldown = 47.5 kΩ		Imax = 1.4 A		Imax = 1.4 A
	CNKVR-		SWG3		FUEL1		SPARK3
13	Differential Frequency Input	31	Switch-to-ground input	49	Low-side output driver	66	Low-side output driver, IGBT
			R _{PULLUP} = 1.0 kΩ		Imax = 1.4 A		Imax = 10 A
	CNKVR+		SPARK1		FUEL2		VBATT+
14	Differential Frequency Input	32	Low-side output driver, IGBT	50	Low-side output driver	67	Battery input
			Imax = 10 A		Imax = 1.4 A		
	DFRQ		SPARK2		XDRP2		PWRGND1
15	Digital Frequency Input	33	Low-side output driver, IGBT	51	Transducer Power	68	Power Ground
			Imax = 10 A		5 V Output		
	LSO3		XDRP1		KEYSW		LS01A
16	Low Side Output 3	34	Transducer Power	52	Key switch	69	Low Side Output with monitor (same as 47,64)
	Recirc. diode, 1 A		5 V Output		R _{PULLDOWN} = 500 Ω		Recirc. diode, 12 A (or 3 A PWM)
	GND		AN10		AN4		PWRGND2
17	Ground	35	Analog input 10	53	Analog input 4	70	Power Ground
17		55	R _{PULLDOWN} =51.1 kΩ, 1%	53	R _{PULLDOWN} =220 kΩ, 5%	10	
	AN8		AN14				
40	Analog input 8	20	Analog input 14				
18	R _{pulldown} =500 Ω	36	R _{pulldown} =51.1 kΩ, 1%				

Environmental Ratings

Environmental Ratings	Notes
Storage Temperature	–40 to +125 °C
Operating Temperature	–40 to +85 °C (105 °C applications possible)
Thermal Shock	–40 to +125 °C
Fluid Resistance	Two-stroke motor oil, four-stroke motor oil, unleaded gasoline, ASTM Reference 'C' fuel
Humidity Resistance	90% humidity at 85 °C for 1000 hours.
Salt Fog Resistance	500 hours. 5% salt fog, 35 °C.
Immersion	4.34 psi (29.92 kPa) test (simulated 10 feet/3 m), salt water, 20 minutes.
Mechanical Shock	50 G's, 11 ms, half sine wave.
Drop Test	Drop test on concrete from 1 meter.
Vibration This ECM family has been successfully deployed with on-engine mounting for small displacement engine applications with extreme vibrations. Electrical and mechanical isolation is achieved via Woodward mounting hardware (consisting of grommet, bushing, and washer) shown at the right. IMPORTANT For prior verification of performance capability, contact Woodward and provide the vibration profile of the intended application.	

WOODWARD

PO Box 1519, Fort Collins CO, USA 80522-1519 1000 East Drake Road, Fort Collins CO 80525 Tel.: +1 (970) 482-5811 • Fax: +1 (970) 498-3058 mcsinfo@woodward.com • mcs.woodward.com www.woodward.com

Distributors & Service

Woodward has an international network of distributors and service facilities. For your nearest representative, call the Fort Collins plant or see the Worldwide Directory on our website.

This document is distributed for informational purposes only. It is not to be construed as creating or becoming part of any Woodward contractual or warranty obligation unless expressly stated in a written sales contract.

